$$D_0^*(2300)$$

$$I(J^P) = \frac{1}{2}(0^+)$$

was $D_0^*(2400)$

There is a strong evidence that recent data on $B \rightarrow D\pi\pi$ (AAIJ 15Y, AAIJ 16AH) and $B \rightarrow D\pi K$ (AAIJ 14BH, AAIJ 15V, AAIJ 15X) call for two poles in the scalar $I = 1/2 \pi D$ amplitude in this mass range. The data are consistent with a lower pole at $(2105_{-8}^{+6}) - i(102_{-11}^{+10})$ MeV and a higher pole at $(2451_{-26}^{+35}) - i(134_{-8}^{+7})$ MeV (DU 18A, DU 19, DU 21). For details see review on "Heavy Non- $q\overline{q}$ Mesons."

D*(2300) MASS

¹ From the Dalitz plot analysis including various K^* and D^{**} mesons as well as broad structures in the $K\pi$ *S*-wave and the $D\pi$ *S*- and *P*-waves.

https://pdg.lbl.gov

Created: 8/11/2022 09:38

² Modeling the $\pi^+\pi^-$ *S*-wave with the Isobar formalism. ³ Modeling the $\pi^+\pi^-$ *S*-wave with the K-matrix formalism. ⁴ Possibly the feed-down from another state.

D₀*(2300) MASS (MeV)

D*(2300) WIDTH

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	CHG	COMMENT
229 ± 16 OUR AVE	RAGE					
$255 \pm 26 \pm 51$		¹ AAIJ	15X	LHCB	+	$B^0 \rightarrow \overline{D}{}^0 K^+ \pi^-$
$217 \pm 13 \pm 13$		² AAIJ	15Y	LHCB	+	$B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$
$273 \pm 12 \pm 48$	3.4k	AUBERT	09 AB	BABR	0	$B^- \rightarrow D^+ \pi^- \pi^-$
$276 \pm 21 \pm 63$		ABE	04 D	BELL	0	$B^- \rightarrow D^+ \pi^- \pi^-$
• • • We do not u	se the follow	ving data for avera	ages, fi	ts, limits	s, etc.	• • •
$230\!\pm\!15\!\pm\!21$		³ AAIJ	15Y	LHCB	+	$B^0 \rightarrow \overline{D}{}^0 \pi^+ \pi^-$
$283 \pm 24 \pm 34$	18.8k	⁴ LINK	04A	FOCS	+	γ A
$240\!\pm\!55\!\pm\!59$	9.8k	⁴ LINK	04A	FOCS	0	γ A
1					**	

¹ From the Dalitz plot analysis including various K^* and D^{**} mesons as well as broad structures in the $K\pi$ S-wave and the $D\pi$ S- and P-waves. ²Modeling the $\pi^+\pi^-$ S-wave with the Isobar formalism. ³Modeling the $\pi^+\pi^-$ S-wave with the K-matrix formalism.

⁴ Possibly the feed-down from another state.

D₀*(2300) DECAY MODES

	Mode	Fraction (Γ_i/Γ)	
Γ ₁	$D\pi^{\pm}$	seen	
Г(<i>D</i> :	$\pi^{\pm})/\Gamma_{total}$	г	- 1/I

VALUE	EVTS	<u>DOCUMENT ID</u>	TECN	CHG	COMMENT
seen		AAIJ	15x LHCB	+	$D^*(2300)^+ \rightarrow D^0 \pi^+$
seen		AAIJ	15Y LHCB	+	$D^*(2300)^+ \rightarrow D^0 \pi^+$
seen	3.4k	AUBERT	09AB BABR	0	$D^*(2300)^0 \to D^+\pi^-$
seen		ABE	04D BELL	0	$D^*(2300)^0 \to D^+\pi^-$
seen	18.8k	LINK	04A FOCS	+	$D^*(2300)^+ \rightarrow D^0 \pi^+$

D₀*(2300) REFERENCES

DU	21	PRL 126 192001	ML. Du <i>et al.</i>	
DU	19	PR D99 114002	ML. Du, FK. Guo, UG. Meissner	
DU	18A	PR D98 094018	ML. Du <i>et al.</i>	
AAIJ	16AH	PR D94 072001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15V	PR D91 092002	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PR D93 119901 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15X	PR D92 012012	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15Y	PR D92 032002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14BH	PR D90 072003	R. Aaij <i>et al.</i>	(LHCb Collab.)
AUBERT	09AB	PR D79 112004	B. Aubert <i>et al.</i>	(BABAR Collab.)
ABE	04D	PR D69 112002	K. Abe <i>et al.</i>	(BELLE Collab.)
LINK	04A	PL B586 11	J.M. Link <i>et al.</i>	(FOCUS Collab.)

https://pdg.lbl.gov

Created: 8/11/2022 09:38