b^{\prime} (4 ${ }^{\text {th }}$ Generation) Quark, Searches for

$b^{\prime}(-1 / 3)$-quark/hadron mass limits in $p \bar{p}$ and $p p$ collisions

VALUE (GeV)	CL\%	DOCUMENT ID	TECN	COMMENT
>1570	95	1 SIRUNYAN 20	20BI CMS	$\mathrm{B}\left(b^{\prime} \rightarrow H b\right)=1$
>1390	95	1 SIRUNYAN 2	20BI CMS	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
>1130	95	2 SIRUNYAN	19AQ CMS	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
>1230	95	3 SIRUNYAN	19BWCMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>1350	95	4 AABOUD 18	18AW ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>1000	95	${ }^{5}$ AABOUD 18	18CE ATLS	$\geq 2 \ell+E_{T}+\geq 1 b j$
>950	95	6 AABOUD 1	18CL ATLS	$W t, Z b, h b$ modes
>1010	95	7,8 AABOUD 1	18CP ATLS	2,3 ℓ, singlet model
>1140	95	6,9 AABOUD 1	18CP ATLS	2,3 , doublet model
>1220	95	10,11 AABOUD 18	18CR ATLS	singlet b^{\prime}. ATLAS Com nation
>1370	95	10,12 AABOUD 1	18CR ATLS	b^{\prime} in a weak isospin do blet $\left(t^{\prime}, b^{\prime}\right)$. ATLAS combination.
>910	95	13 SIRUNYAN 1	18BM CMS	$W t, Z b, h b$ modes
> 845	95	14 SIRUNYAN 18	18Q CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W u\right)=1$
>730	95	15 SIRUNYAN 17	17AU CMS	
>880	95	16 KHACHATRY... 1	16AN CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>620	95	17 AAD 1	15BY ATLS	$W t, Z b, h b$ modes
>730	95	18 AAD 1	15BY ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>810	95	19 AAD 1	15z ATLS	
>755	95	20 AAD 1	14AZ ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>675	95	21 CHATRCHYAN 1	13I CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>190	95	22 ABAZOV 08x	08x D0	$\mathrm{c} \tau=200 \mathrm{~mm}$
>190	95	23 ACOSTA 03	03 CDF	quasi-stable b^{\prime}

- - We do not use the following data for averages, fits, limits, etc. - -

<350, 580-635, > 700	95		AAD	15AR	ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow H b\right)=1$
> 690	95		AAD	15CN	ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W \mathrm{q}\right)=1(q=u)$
>480	95		AAD	12AT	ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>400	95	27	AAD	12AU	ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
> 350	95		AAD	12BC	ATLS	$\begin{aligned} & \mathrm{B}\left(b^{\prime} \rightarrow W q\right)=1 \\ & \quad(q=u, c) \end{aligned}$
>450	95		AAD	12BE	ATLS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
>685	95		CHATRCHYAN	12BH	CMS	$m_{t^{\prime}}=m_{b^{\prime}}$
>611	95		CHATRCHYAN	12x	CMS	$\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$
> 372	95		AALTONEN	11J	CDF	$b^{\prime} \rightarrow W t$
> 361	95		CHATRCHYAN	11L	CMS	Repl. by CHATRCHYAN $12 x$
>338	95		AALTONEN	10 H	CDF	$b^{\prime} \rightarrow W$ t
> 380-430	95	35	FLACCO	10	RVUE	$m_{b^{\prime}}>m_{t^{\prime}}$
>268	95	36,37	AALTONEN	07C	CDF	$\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$
> 199	95		AFFOLDER	00	CDF	NC: $b^{\prime} \rightarrow Z b$

>148	95	39 ABE	98N	CDF	NC: $b^{\prime} \rightarrow Z \quad$ b + vertex
>96	95	40 ABACHI	97D	D0	$\mathrm{NC}: b^{\prime} \rightarrow b \gamma$
>128	95	41 ABACHI	95F	D0	$\ell \ell+$ jets, $\ell+$ jets
>75	95	42 MUKHOPAD..	93	RVUE	NC: $b^{\prime} \rightarrow$ bll
>85	95	43 ABE	92	CDF	CC: $\ell \ell$
>72	95	44 ABE	90B	CDF	CC: $e+\mu$
>54	95	45 AKESSON	90	UA2	CC: $e+$ jets $+E_{T}$
>43	95	46 ALBAJAR	90B	UA1	CC: $\mu+$ jets
>34	95	47 ALBAJAR	88	UA1	CC: e or $\mu+$ jets

${ }^{1}$ SIRUNYAN 20BI based on $137 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair production of vector-like b^{\prime} is seached for with each b^{\prime} decaying into $Z b$ or $h b$. Analysis focuses on final states consisting of jets from six quarks. Mass limits are obtained for a variety of branching ratios of b^{\prime} decays.
${ }^{2}$ SIRUNYAN 19AQ based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair production of vector-like b^{\prime} is seached for with one b^{\prime} decaying into $Z b$ and the other b^{\prime} decaying into $W t, Z b, h b$. Events with an opposite-sign lepton pair consistent with coming from Z and jets are used. Mass limits are obtained for a variety of branching ratios of b^{\prime}.
${ }^{3}$ SIRUNYAN 19BW based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} using all-hadronic final state. The analysis is made for the $Z b, W t, h b$ modes and mass limits are obtained for a variety of branching ratios.
${ }^{4}$ AABOUD 18AW based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} using lepton-plus-jets final state. The search is also sensitive to the decays into $Z b$ and $H b$ final states.
${ }^{5}$ AABOUD 18CE based on $36.1 \mathrm{fb}^{-1}$ of proton-proton data taken at $\sqrt{s}=13 \mathrm{TeV}$. Events including a same-sign lepton pair are used. The limit is for a singlet model, assuming the branching ratios of b^{\prime} into $Z b, W t$ and $H b$ as predicted by the model.
${ }^{6}$ AABOUD 18CL, AABOUD 18CP based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} using all-hadronic final state. The analysis is particularly powerful for the $b^{\prime} \rightarrow h b$ mode. Assuming the pure decay only in this mode sets a limit $m_{b^{\prime}}>1010 \mathrm{GeV}$.
${ }^{7}$ AABOUD 18CP based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Pair and single production of vector-like b^{\prime} are seached for with at least one b^{\prime} decaying into $Z b$. In the case of $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$, the limit is $m_{b^{\prime}}>1220 \mathrm{GeV}$.
${ }^{8}$ The limit is for the singlet model, assuming that the branching ratios into $W t, Z b, h b$ add up to one.
${ }^{9}$ The limit is for the doublet model, assuming that the branching ratios into $W t, Z b, h b$ add up to one.
10 AABOUD 18CR based on $36.1 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. A combination of searches for the pair-produced vector-like b^{\prime} in various decay channels $\left(b^{\prime} \rightarrow W t, Z b\right.$, $h b$). Also a model-independent limit is obtained as $m_{b^{\prime}}>1.03 \mathrm{TeV}$, assuming that the branching ratios into $Z b, W t$, and $h b$ add up to one.
11 The limit is for the singlet b^{\prime}.
12 The limit is for b^{\prime} in a weak isospin doublet $\left(t^{\prime}, b^{\prime}\right)$ and $\left|V_{t^{\prime} b}\right| \ll\left|V_{t b^{\prime}}\right|$. For a b^{\prime} in a doublet with a charge $-4 / 3$ vector-like quark, the limit $m_{b^{\prime}}>1.14 \mathrm{TeV}$ is obtained.
13 SIRUNYAN 18BM based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime}. Three channels (single lepton, same-charge 2 leptons, or at least 3 leptons) are considered for various branching fraction combinations. Assuming $\mathrm{B}(t W)=1$, the limit is 1240 GeV and for $\mathrm{B}(b Z)=1$ it is 960 GeV .
14 SIRUNYAN 18Q based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. The limit is for the pair-produced vector-like b^{\prime} that couple only to light quarks. Upper cross section limits
on the single production of a b^{\prime} and constraints for other decay channels ($Z q$ and $H q$) are also given in the paper.
15 SIRUNYAN 17AU based on $2.3-2.6 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Limit on pairproduced singlet vector-like b^{\prime} using one lepton and several jets. The mass bound is given for a b^{\prime} transforming as a singlet under the electroweak symmetry group, assumed to decay through W, Z or Higgs boson (which decays to jets) and to a third generation quark.
16 KHACHATRYAN 16AN based on $19.7 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pairproduced vector-like b^{\prime} using 1,2 , and >2 leptons as well as fully hadronic final states. Other limits depending on the branching fractions to $t W, b Z$, and $b H$ are given in Table IX.
${ }^{17}$ AAD 15BY based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-produced vector-like b^{\prime} assuming the branching fractions to W, Z, and h modes of the singlet model. Used events containing $\geq 2 \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 b)$ and including a same-sign lepton pair.
18 AAD 15BY based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-produced chiral b^{\prime}-quark. Used events containing $\geq 2 \ell+E_{T}+\geq 2 \mathrm{j}(\geq 1 b)$ and including a same-sign lepton pair.
${ }^{19}$ AAD $15 Z$ based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Used events with $\ell+E_{T}+$ $\geq 6 \mathrm{j}(\geq 1 b)$ and at least one pair of jets from weak boson decay, primarily designed to select the signature $b^{\prime} \bar{b}^{\prime} \rightarrow W W t \bar{t} \rightarrow W W W W b \bar{b}$. This is a limit on pair-produced vector-like b^{\prime}. The lower mass limit is 640 GeV for a vector-like singlet b^{\prime}.
${ }^{20}$ Based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. No significant excess over SM expectation is found in the search for pair production or single production of b^{\prime} in the events with dilepton from a high $p_{T} Z$ and additional jets ($\geq 1 b$-tag). If instead of $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)$ $=1$ an electroweak singlet with $\mathrm{B}\left(b^{\prime} \rightarrow W t\right) \sim 0.45$ is assumed, the limit reduces to 685 GeV .
21 Based on $5.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 13 looked for events with one isolated electron or muon, large E_{T}, and at least four jets with large transverse momenta, where one jet is likely to originate from the decay of a bottom quark.
${ }^{22}$ Result is based on $1.1 \mathrm{fb}^{-1}$ of data. No signal is found for the search of long-lived particles which decay into final states with two electrons or photons, and upper bound on the cross section times branching fraction is obtained for $2<\mathrm{c} \tau<7000 \mathrm{~mm}$; see Fig. 3. 95% CL excluded region of b^{\prime} lifetime and mass is shown in Fig. 4.

23 ACOSTA 03 looked for long-lived fourth generation quarks in the data sample of 90 pb^{-1} of $\sqrt{s}=1.8 \mathrm{TeV} p \bar{p}$ collisions by using the muon-like penetration and anomalously high ionization energy loss signature. The corresponding lower mass bound for the charge $(2 / 3)$ e quark $\left(t^{\prime}\right)$ is 220 GeV . The t^{\prime} bound is higher than the b^{\prime} bound because t^{\prime} is more likely to produce charged hadrons than b^{\prime}. The $95 \% \mathrm{CL}$ upper bounds for the production cross sections are given in their Fig. 3.
${ }^{24}$ AAD 15AR based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Used lepton-plus-jets final state. See Fig. 24 for mass limits in the plane of $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)$ vs. $\mathrm{B}\left(b^{\prime} \rightarrow H b\right)$ from $b^{\prime} \bar{b}^{\prime} \rightarrow H b+X$ searches.
${ }^{25}$ AAD 15CN based on $20.3 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=8 \mathrm{TeV}$. Limit on pair-production of chiral b^{\prime}-quark. Used events with $\ell+E_{T}+\geq 4 j$ (non- b-tagged). Limits on a heavy vector-like quark, which decays into $W q, Z q, h q$, are presented in the plane $\mathrm{B}(Q \rightarrow$ $W q)$ vs. $\mathrm{B}(Q \rightarrow h q)$ in Fig. 12.
${ }^{26}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found for the search of heavy quark pair production that decay into W and a t quark in the events with a high p_{T} isolated lepton, large E_{T}, and at least 6 jets in which one, two or more dijets are from W.
27 Based on $2.0 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No $b^{\prime} \rightarrow Z b$ invariant mass peak is found in the search of heavy quark pair production that decay into Z and a b quark in
events with $Z \rightarrow e^{+} e^{-}$and at least one b-jet. The lower mass limit is 358 GeV for a vector-like singlet b^{\prime} mixing solely with the third SM generation.
28 Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. No signal is found for the search of heavy quark pair production that decay into W and a quark in the events with dileptons, large E_{T}, and ≥ 2 jets.
${ }^{29}$ Based on $1.04 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. AAD 12BE looked for events with two isolated like-sign leptons and at least 2 jets, large E_{T} and $\mathrm{H}_{T}>350 \mathrm{GeV}$.
30 Based on $5 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN 12BH searched for QCD and EW production of single and pair of degenerate 4 'th generation quarks that decay to $b W$ or $t W$. Absence of signal in events with one lepton, same-sign dileptons or trileptons gives the bound. With a mass difference of $25 \mathrm{GeV} / \mathrm{c}^{2}$ between $m_{t^{\prime}}$ and $m_{b^{\prime}}$, the corresponding limit shifts by about $\pm 20 \mathrm{GeV} / \mathrm{c}^{2}$.
31 Based on $4.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=7 \mathrm{TeV}$. CHATRCHYAN $12 \times$ looked for events with trileptons or same-sign dileptons and at least one b jet.
32 Based on $4.8 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at 1.96 TeV . AALTONEN 11 J looked for events with $\ell+E_{T}+\geq 5 j(\geq 1 b$ or $c)$. No signal is observed and the bound $\sigma\left(b^{\prime} \bar{b}^{\prime}\right)$ $<30 \mathrm{fb}$ for $m_{b^{\prime}}>375 \mathrm{GeV}$ is found for $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$.
33 Based on $34 \mathrm{pb}^{-1}$ of data in $p p$ collisions at 7 TeV . CHATRCHYAN 11L looked for multijet events with trileptons or same-sign dileptons. No excess above the SM background excludes $m_{b^{\prime}}$ between 255 and 361 GeV at $95 \% \mathrm{CL}$ for $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=1$.
${ }^{34}$ Based on $2.7 \mathrm{fb}^{-1}$ of data in $p \bar{p}$ collisions at $\sqrt{s}=1.96 \mathrm{TeV}$. AALTONEN 10 H looked for pair production of heavy quarks which decay into $t W^{-}$or $t W^{+}$, in events with same sign dileptons (e or μ), several jets and large missing E_{T}. The result is obtained for b^{\prime} which decays into $t W^{-}$. For the charge $5 / 3$ quark $\left(T_{5 / 3}\right)$ which decays into $t W^{+}$, $m_{T_{5 / 3}}>365 \mathrm{GeV}(95 \% \mathrm{CL})$ is found when it has the charge $-1 / 3$ partner B of the same mass.
${ }^{35}$ FLACCO 10 result is obtained from AALTONEN 10 H result of $m_{b^{\prime}}>338 \mathrm{GeV}$, by relaxing the condition $\mathrm{B}\left(b^{\prime} \rightarrow W t\right)=100 \%$ when $m_{b^{\prime}}>m_{t^{\prime}}$.
36 Result is based on $1.06 \mathrm{fb}^{-1}$ of data. No excess from the $\mathrm{SM} Z+$ jet events is found when Z decays into ee or $\mu \mu$. The $m_{b^{\prime}}$ bound is found by comparing the resulting upper bound on $\sigma\left(b^{\prime} \bar{b}^{\prime}\right)$ [1-(1- $\left.\left.\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)\right)^{2}\right]$ and the LO estimate of the b^{\prime} pair production cross section shown in Fig. 38 of the article.
37 HUANG 08 reexamined the b^{\prime} mass lower bound of 268 GeV obtained in AALTONEN 07C that assumes $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$, which does not hold for $m_{b^{\prime}}>255 \mathrm{GeV}$. The lower mass bound is given in the plane of $\sin ^{2}\left(\theta_{t b^{\prime}}\right)$ and $m_{b^{\prime}}$.
38 AFFOLDER 00 looked for b^{\prime} that decays in to $b+Z$. The signal searched for is $b b Z Z$ events where one Z decays into $e^{+} e^{-}$or $\mu^{+} \mu^{-}$and the other Z decays hadronically. The bound assumes $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=100 \%$. Between 100 GeV and 199 GeV , the $95 \% \mathrm{CL}$ upper bound on $\sigma\left(b^{\prime} \rightarrow \bar{b}^{\prime}\right) \times \mathrm{B}^{2}\left(b^{\prime} \rightarrow Z b\right)$ is also given (see their Fig. 2).
39 ABE 98N looked for $Z \rightarrow e^{+} e^{-}$decays with displaced vertices. Quoted limit assumes $\mathrm{B}\left(b^{\prime} \rightarrow Z b\right)=1$ and $c \tau_{b^{\prime}}=1 \mathrm{~cm}$. The limit is lower than $m_{Z}+m_{b}(\sim 96 \mathrm{GeV})$ if $c \tau>22 \mathrm{~cm}$ or $c \tau<0.009 \mathrm{~cm}$. See their Fig. 4.
40 ABACHI 97D searched for b^{\prime} that decays mainly via FCNC. They obtained 95% CL upper bounds on $\mathrm{B}\left(b^{\prime} \bar{b}^{\prime} \rightarrow \gamma+3\right.$ jets $)$ and $\mathrm{B}\left(b^{\prime} \bar{b}^{\prime} \rightarrow 2 \gamma+2\right.$ jets $)$, which can be interpreted as the lower mass bound $m_{b^{\prime}}>m_{Z}+m_{b}$.
${ }^{41} \mathrm{ABACHI} 95 \mathrm{~F}$ bound on the top-quark also applies to b^{\prime} and t^{\prime} quarks that decay predominantly into W. See FROGGATT 97.
${ }^{42}$ MUKHOPADHYAYA 93 analyze CDF dilepton data of ABE 92G in terms of a new quark decaying via flavor-changing neutral current. The above limit assumes $\mathrm{B}\left(b^{\prime} \rightarrow\right.$
$\left.b \ell^{+} \ell^{-}\right)=1 \%$. For an exotic quark decaying only via virtual $Z\left[\mathrm{~B}\left(b \ell^{+} \ell^{-}\right)=3 \%\right]$, the limit is 85 GeV .
43 ABE 92 dilepton analysis limit of $>85 \mathrm{GeV}$ at $\mathrm{CL}=95 \%$ also applies to b^{\prime} quarks, as discussed in ABE 90B.
44 ABE 90B exclude the region $28-72 \mathrm{GeV}$.
${ }^{45}$ AKESSON 90 searched for events having an electron with $p_{T}>12 \mathrm{GeV}$, missing momentum $>15 \mathrm{GeV}$, and a jet with $E_{T}>10 \mathrm{GeV},|\eta|<2.2$, and excluded $m_{b^{\prime}}$ between 30 and 69 GeV .
${ }^{46}$ For the reduction of the limit due to non-charged-current decay modes, see Fig. 19 of ALBAJAR 90B.
47 ALBAJAR 88 study events at $E_{\mathrm{cm}}=546$ and 630 GeV with a muon or isolated electron, accompanied by one or more jets and find agreement with Monte Carlo predictions for the production of charm and bottom, without the need for a new quark. The lower mass limit is obtained by using a conservative estimate for the $b^{\prime} \bar{b}^{\prime}$ production cross section and by assuming that it cannot be produced in W decays. The value quoted here is revised using the full $O\left(\alpha_{s}^{3}\right)$ cross section of ALTARELLI 88.

$\boldsymbol{b}^{\prime}(-1 / 3)$ mass limits from single production in $p \bar{p}$ and $p p$ collisions

$V A L U E(\mathrm{GeV})$	CL\%	DOCUMENT ID	TECN	COMMENT
>1500	95	1 AAD 16AH	ATLS	$\begin{gathered} g b \rightarrow \underset{y}{ } \rightarrow{ }^{\prime} \rightarrow t W, \mathrm{~B}\left(b^{\prime} \rightarrow\right. \\ t W) \end{gathered}$
>1390	95	2 KHACHATRY...16I	CMS	$\begin{gathered} g b \rightarrow \underset{ }{g} \rightarrow \\ t W)=1 \end{gathered}$
>1430	95	3 KHACHATRY...16I	CMS	$\begin{gathered} g b \rightarrow \underset{y}{\prime} \rightarrow 1 \\ t W, \end{gathered}$
>1530	95	4 KHACHATRY...16I	CMS	$\begin{gathered} g b \rightarrow \quad b^{\prime} \rightarrow t W, \mathrm{~B}\left(b^{\prime} \rightarrow\right. \\ t W)=1 \end{gathered}$
>693	95	${ }^{5}$ ABAZOV 11F	D0	$\begin{aligned} & q u \rightarrow q^{\prime} b^{\prime} \rightarrow q^{\prime}(W u) \\ & \quad \widetilde{\kappa}_{u b^{\prime}}=1, \mathrm{~B}\left(b^{\prime} \rightarrow W u\right)=1 \end{aligned}$
>430	95	5 ABAZOV 11F	D0	$\begin{aligned} & q d \rightarrow q b^{\prime} \rightarrow q(Z d) \\ & \quad \widetilde{\kappa}_{d b^{\prime}}=\sqrt{2}, \mathrm{~B}\left(b^{\prime} \rightarrow Z d\right)=1 \end{aligned}$

- - We do not use the following data for averages, fits, limits, etc. - - -

6 SIRUNYAN 19AI CMS $b Z / t W \rightarrow b^{\prime} \rightarrow t W$
${ }^{1}$ AAD 16 AH based on $20.3 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . No significant excess over SM expectation is found in the search for a vector-like b^{\prime} in the single-lepton and dilepton channels $(\ell$ or $\ell \ell)+1,2,3 j(\geq 1 b)$. The model assumes that the b^{\prime} has the excited quark couplings.
${ }^{2}$ Based on $19.7 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . Limit on left-handed b^{\prime} assuming 100% decay to $t W$ and using all-hadronic, lepton + jets, and dilepton final states.
${ }^{3}$ Based on $19.7 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . Limit on right-handed b^{\prime} assuming 100% decay to $t W$ and using all-hadronic, lepton + jets, and dilepton final states.
${ }^{4}$ Based on $19.7 \mathrm{fb}^{-1}$ of data in $p p$ collisions at 8 TeV . Limit on vector-like b^{\prime} assuming 100% decay to $t W$ and using all-hadronic, lepton + jets, and dilepton final states.
${ }^{5}$ Based on $5.4 \mathrm{fb}^{-1}$ of data in ppbar collisions at 1.96 TeV . ABAZOV 11 F looked for single production of b^{\prime} via the W or Z coupling to the first generation up or down quarks, respectively. Model independent cross section limits for the single production processes $p \bar{p} \rightarrow b^{\prime} q \rightarrow W u q$, and $p \bar{p} \rightarrow b^{\prime} q \rightarrow Z d q$ are given in Figs. 3 and 4, respectively, and the mass limits are obtained for the model of ATRE 09 with degenerate bi-doublets of vector-like quarks.
${ }^{6}$ SIRUNYAN 19AI based on $35.9 \mathrm{fb}^{-1}$ of $p p$ data at $\sqrt{s}=13 \mathrm{TeV}$. Exclusion limits are set on the product of the production cross section and branching fraction for the $b^{\prime}(-1 / 3)+b$ and $b^{\prime}(-1 / 3)+t$ modes as a function of the vector-like quark mass in Figs. 7 and 8 and in Tab. 2 for relative vector-like quark widths between 1 and 30% for
left- and right-handed vector-like quark couplings. No significant deviation from the SM prediction is observed

MASS LIMITS for \boldsymbol{b}^{\prime} (4 $4^{\text {th }}$ Generation) Quark or Hadron in $\boldsymbol{e}^{+} \boldsymbol{e}^{-}$Collisions

Search for hadrons containing a fourth-generation $-1 / 3$ quark denoted b^{\prime}.
The last column specifies the assumption for the decay mode (C C denotes the conventional charged-current decay) and the event signature which is looked for.

VALUE (GeV)	CL\%	DOCUMENT ID		TECN	$\frac{\text { COMMENT }}{\text { any decay }}$
>46.0	95	1 DECAMP	90F	ALEP	
- - We do not use the following data for averages, fits, limits, etc. - -					
none 96-103	95	${ }^{2}$ ABDALLAH 3 ADRIANI	$\begin{aligned} & 07 \\ & 93 \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { DLPH } \\ & \text { L3 } \end{aligned}$	$b^{\prime} \rightarrow b Z, c W$ Quarkonium
>44.7	95	ADRIANI	93M	L3	$\Gamma(Z)$
>45	95	ABREU	91F	DLPH	$\Gamma(Z)$
none 19.4-28.2	95	ABE	90D	VNS	Any decay; event shape
>45.0	95	ABREU	90D	DLPH	$B(C C)=1$; event shape
>44.5	95	${ }^{4}$ ABREU	90D	DLPH	$\begin{aligned} b^{\prime} & \rightarrow c H^{-}, H^{-} \rightarrow \\ & \bar{c} s, \tau^{-} \nu \end{aligned}$
>40.5	95	${ }^{5}$ ABREU	90D	DLPH	$\Gamma(Z \rightarrow$ hadrons $)$
>28.3	95	ADACHI	90	TOPZ	$\begin{aligned} & \mathrm{B}(\mathrm{FCNC})=100 \% \text {; isol. } \\ & \quad \gamma \text { or } 4 \text { jets } \end{aligned}$
>41.4	95	6 AKRAWY	90B	OPAL	Any decay; acoplanarity
>45.2	95	6 AKRAWY	90B	OPAL	$\mathrm{B}(C C)=1 ; \text { acopla- }$ narity
>46	95	${ }^{7}$ AKRAWY	90J	OPAL	$b^{\prime} \rightarrow \gamma+$ any
>27.5	95	${ }^{8} \mathrm{ABE}$	89E	VNS	$\mathrm{B}(C C)=1 ; \mu, e$
none 11.4-27.3	95	9 ABE	89G	VNS	$\begin{aligned} & \mathrm{B}\left(b^{\prime} \rightarrow b \gamma\right)>10 \% \\ & \quad \text { isolated } \gamma \end{aligned}$
>44.7	95	10 ABRAMS	89C	MRK2	$B(C C)=100 \%$; isol. track
>42.7	95	10 ABRAMS	89C	MRK2	$\begin{aligned} & \mathrm{B}(b g)=100 \% ; \text { event } \\ & \text { shape } \end{aligned}$
>42.0	95	10 ABRAMS	89C	MRK2	Any decay; event shape
>28.4	95	11,12 ADACHI	89C	TOPZ	$\mathrm{B}(\mathrm{C} C)=1 ; \mu$
>28.8	95	13 ENO	89	AMY	$\mathrm{B}(\mathrm{CC}) \geq 90 \% ; \mu, e$
>27.2	95	13,14 ENO	89	AMY	any decay; event shape
>29.0	95	13 ENO	89	AMY	
>24.4	95	15 IGARASHI	88	AMY	μ, e
>23.8	95	16 SAGAWA	88	AMY	event shape
>22.7	95	17 ADEVA	86	MRKJ	μ
>21		18 ALTHOFF	84C	TASS	R, event shape
>19		19 ALTHOFF	841	TASS	Aplanarity

${ }^{1}$ DECAMP 90F looked for isolated charged particles, for isolated photons, and for four-jet final states. The modes $b^{\prime} \rightarrow b g$ for $\mathrm{B}\left(b^{\prime} \rightarrow b g\right)>65 \% b^{\prime} \rightarrow b \gamma$ for $\mathrm{B}\left(b^{\prime} \rightarrow b \gamma\right)$ $>5 \%$ are excluded. Charged Higgs decay were not discussed.
${ }^{2}$ ABDALLAH 07 searched for b^{\prime} pair production at $E_{\mathrm{cm}}=196-209 \mathrm{GeV}$, with $420 \mathrm{pb}^{-1}$. No signal leads to the $95 \% \mathrm{CL}$ upper limits on $\mathrm{B}\left(b^{\prime} \rightarrow b Z\right)$ and $\mathrm{B}\left(b^{\prime} \rightarrow c W\right)$ for $m_{b^{\prime}}$ $=96$ to 103 GeV .
${ }^{3}$ ADRIANI 93 search for vector quarkonium states near Z and give limit on quarkoniumZ mixing parameter $\delta m^{2}<(10-30) \mathrm{GeV}^{2}(95 \% \mathrm{CL})$ for the mass $88-94.5 \mathrm{GeV}$. Using Richardson potential, a $1 \mathrm{~S}\left(b^{\prime} \bar{b}^{\prime}\right)$ state is excluded for the mass range $87.7-94.7 \mathrm{GeV}$. This range depends on the potential choice.
${ }^{4}$ ABREU 90D assumed $m_{H^{-}}<m_{b^{\prime}}-3 \mathrm{GeV}$.
${ }^{5}$ Superseded by ABREU 91F.
${ }^{6}$ AKRAWY 90 B search was restricted to data near the Z peak at $E_{\mathrm{cm}}=91.26 \mathrm{GeV}$ at LEP. The excluded region is between 23.6 and 41.4 GeV if no H^{+}decays exist. For charged Higgs decays the excluded regions are between ($m_{H^{+}}+1.5 \mathrm{GeV}$) and 45.5 GeV .
${ }^{7}$ AKRAWY 90」 search for isolated photons in hadronic Z decay and derive $\mathrm{B}\left(Z \rightarrow b^{\prime} \bar{b}^{\prime}\right) \cdot \mathrm{B}\left(b^{\prime} \rightarrow \gamma \mathrm{X}\right) / \mathrm{B}(Z \rightarrow$ hadrons $)<2.2 \times 10^{-3}$. Mass limit assumes $\mathrm{B}\left(b^{\prime} \rightarrow \gamma \mathrm{X}\right)>10 \%$.
${ }^{8}$ ABE 89E search at $E_{\mathrm{cm}}=56-57 \mathrm{GeV}$ at TRISTAN for multihadron events with a spherical shape (using thrust and acoplanarity) or containing isolated leptons.
${ }^{9}$ ABE 89G search was at $E_{\mathrm{cm}}=55-60.8 \mathrm{GeV}$ at TRISTAN.
${ }^{10}$ If the photonic decay mode is large $\left(\mathrm{B}\left(b^{\prime} \rightarrow b \gamma\right)>25 \%\right)$, the ABRAMS 89C limit is 45.4 GeV . The limit for for Higgs decay ($b^{\prime} \rightarrow c \mathrm{H}^{-}, \mathrm{H}^{-} \rightarrow \bar{c} s$) is 45.2 GeV .
${ }^{11}$ ADACHI 89C search was at $E_{\mathrm{cm}}=56.5-60.8 \mathrm{GeV}$ at TRISTAN using multi-hadron events accompanying muons.
${ }^{12}$ ADACHI 89C also gives limits for any mixture of $C C$ and $b g$ decays.
${ }^{13}$ ENO 89 search at $E_{\mathrm{cm}}=50-60.8$ at TRISTAN.
${ }^{14}$ ENO 89 considers arbitrary mixture of the charged current, $b g$, and $b \gamma$ decays.
${ }^{15}$ IGARASHI 88 searches for leptons in low-thrust events and gives $\Delta R\left(b^{\prime}\right)<0.26$ (95\% CL) assuming charged current decay, which translates to $m_{b^{\prime}}>24.4 \mathrm{GeV}$.
${ }^{16}$ SAGAWA 88 set limit σ (top $)<6.1 \mathrm{pb}$ at $\mathrm{CL}=95 \%$ for top-flavored hadron production from event shape analyses at $E_{\mathrm{cm}}=52 \mathrm{GeV}$. By using the quark parton model crosssection formula near threshold, the above limit leads to lower mass bounds of 23.8 GeV for charge $-1 / 3$ quarks.
17 ADEVA 86 give $95 \% \mathrm{CL}$ upper bound on an excess of the normalized cross section, ΔR, as a function of the minimum c.m. energy (see their figure 3). Production of a pair of $1 / 3$ charge quarks is excluded up to $E_{\mathrm{cm}}=45.4 \mathrm{GeV}$.
${ }^{18}$ ALTHOFF 84 C narrow state search sets limit $\Gamma\left(e^{+} e^{-}\right) \mathrm{B}$ (hadrons) $<2.4 \mathrm{keV} \mathrm{CL}=95 \%$ and heavy charge $1 / 3$ quark pair production $m>21 \mathrm{GeV}, \mathrm{CL}=95 \%$.
${ }^{19}$ ALTHOFF 84 I exclude heavy quark pair production for $7<m<19 \mathrm{GeV}$ ($1 / 3$ charge) using aplanarity distributions ($\mathrm{CL}=95 \%$).

REFERENCES FOR Searches for (Fourth Generation) b' Quark

SIRUNYAN	20BI	PR D102
SIRUNYAN	19AI	EPJ C79 90
RUNYAN	19AQ	EPJ C79 364
RUNYAN	19BW	PR D100 0720
BAOUD	18AW	JHEP 1808
BOUD	18CE	JHEP 181203
AABOUD	18CL	PR D98 0
AABOUD	18CP	PR D98 1
BOU	18C	PRL 121
RUNYAN	18BM	JHEP 1808
RUNYAN	18Q	PR D97 072008
SIRUNYAN	17AU	JHEP 1711085
AAD	16AH	JHEP 1602110
KHACH	16AN	PR D93 112009
HACHATR		JHEP 1601
D	15AR	JHEP 1508105
AAD	15B	JHEP 1510150

https://pdg.lbl.gov
A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al. A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al. G. Aad et al.
V. Khachatryan et al. V. Khachatryan et al. G. Aad et al. G. Aad et al.
(CMS Collab.)
(CMS Collab.)
(CMS Collab.)
(CMS Collab.)
(ATLAS Collab.)
(ATLAS Collab.)
(ATLAS Collab.)
(ATLAS Collab.)
(ATLAS Collab.)
(CMS Collab.)
(CMS Collab.)
(CMS Collab.)
(ATLAS Collab.)
(CMS Collab.)
(CMS Collab.)
(ATLAS Collab.)
(ATLAS Collab.)
Page 7

Created: 8/11/2022 09:38

AAD	15CN	PR D92 112007	G. Aad et al.	(ATLAS Collab.)
AAD	$15 Z$	PR D91 112011	G. Aad et al.	(ATLAS Collab.)
AAD	14AZ	JHEP 1411104	G. Aad et al.	(ATLAS Collab.)
CHATRCHYAN	131	JHEP 1301154	S. Chatrchyan et al.	(CMS Collab.)
AAD	12AT	PRL 109032001	G. Aad et al.	(ATLAS Collab.)
AAD	12AU	PRL 109071801	G. Aad et al.	(ATLAS Collab.)
AAD	12BC	PR D86 012007	G. Aad et al.	(ATLAS Collab.)
AAD	12BE	JHEP 1204069	G. Aad et al.	(ATLAS Collab.)
CHATRCHYAN	12BH	PR D86 112003	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN	12X	JHEP 1205123	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	11J	PRL 106141803	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	11F	PRL 106081801	V.M. Abazov et al.	(D0 Collab.)
CHATRCHYAN	11L	PL B701 204	S. Chatrchyan et al.	(CMS Collab.)
AALTONEN	10H	PRL 104091801	T. Aaltonen et al.	(CDF Collab.)
FLACCO	10	PRL 105111801	C.J. Flacco et al.	(UCI, HAIF)
ATRE	09	PR D79 054018	A. Atre et al.	
ABAZOV	08X	PRL 101111802	V.M. Abazov et al.	(D0 Collab.)
HUANG	08	PR D77 037302	P.Q. Hung, M. Sher	(UVA, WILL)
AALTONEN	07C	PR D76 072006	T. Aaltonen et al.	(CDF Collab.)
ABDALLAH	07	EPJ C50 507	J. Abdallah et al.	(DELPHI Collab.)
ACOSTA	03	PRL 90131801	D. Acosta et al.	(CDF Collab.)
AFFOLDER	00	PRL 84835	A. Affolder et al.	(CDF Collab.)
ABE	98N	PR D58 051102	F. Abe et al.	(CDF Collab.)
ABACHI	97D	PRL 783818	S. Abachi et al.	(D0 Collab.)
FROGGATT	97	ZPHY C73 333	C.D. Froggatt, D.J. Smith, H.B.	Nielsen (GLAS+)
ABACHI	95F	PR D52 4877	S. Abachi et al.	(D0 Collab.)
ADRIANI	93G	PL B313 326	O. Adriani et al.	(L3 Collab.)
ADRIANI	93M	PRPL 2361	O. Adriani et al.	(L3 Collab.)
MUKHOPAD...	93	PR D48 2105	B. Mukhopadhyaya, D.P. Roy	(TATA)
ABE	92	PRL 68447	F. Abe et al.	(CDF Collab.)
Also		PR D45 3921	F. Abe et al.	(CDF Collab.)
ABE	92G	PR D45 3921	F. Abe et al.	(CDF Collab.)
ABREU	91F	NP B367 511	P. Abreu et al.	(DELPHI Collab.)
ABE	90B	PRL 64147	F. Abe et al.	(CDF Collab.)
ABE	90D	PL B234 382	K. Abe et al.	(VENUS Collab.)
ABREU	90D	PL B242 536	P. Abreu et al.	(DELPHI Collab.)
ADACHI	90	PL B234 197	I. Adachi et al.	(TOPAZ Collab.)
AKESSON	90	ZPHY C46 179	T. Akesson et al.	(UA2 Collab.)
AKRAWY	90B	PL B236 364	M.Z. Akrawy et al.	(OPAL Collab.)
AKRAWY	90J	PL B246 285	M.Z. Akrawy et al.	(OPAL Collab.)
ALBAJAR	90B	ZPHY C48 1	C. Albajar et al.	(UA1 Collab.)
DECAMP	90F	PL B236 511	D. Decamp et al.	(ALEPH Collab.)
ABE	89E	PR D39 3524	K. Abe et al.	(VENUS Collab.)
ABE	89G	PRL 631776	K. Abe et al.	(VENUS Collab.)
ABRAMS	89C	PRL 632447	G.S. Abrams et al.	(Mark II Collab.)
ADACHI	89C	PL B229 427	I. Adachi et al.	(TOPAZ Collab.)
ENO	89	PRL 631910	S. Eno et al.	(AMY Collab.)
ALBAJAR	88	ZPHY C37 505	C. Albajar et al.	(UA1 Collab.)
ALTARELLI	88	NP B308 724	G. Altarelli et al.	(CERN, ROMA, ETH)
IGARASHI	88	PRL 602359	S. Igarashi et al.	(AMY Collab.)
SAGAWA	88	PRL 6093	H. Sagawa et al.	(AMY Collab.)
ADEVA	86	PR D34 681	B. Adeva et al.	(Mark-J Collab.)
ALTHOFF	84 C	PL 138B 441	M. Althoff et al.	(TASSO Collab.)
ALTHOFF	841	ZPHY C22 307	M. Althoff et al.	(TASSO Collab.)

