b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b)

b-baryon ADMIXTURE MEAN LIFE

Each measurement of the *b*-baryon mean life is an average over an admixture of various *b* baryons which decay weakly. Different techniques emphasize different admixtures of produced particles, which could result in a different *b*-baryon mean life. More *b*-baryon flavor specific channels are not included in the measurement.

	$VALUE (10^{-12} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT		
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet								
	$1.218^{+0.130}_{-0.115}{\pm}0.042$		¹ ABAZOV	07 S	D0	Repl. by ABAZOV 120		
	$1.22 \begin{array}{c} +0.22 \\ -0.18 \end{array} \pm 0.04$		¹ ABAZOV	05 C	D0	Repl. by ABAZOV 075		
	$1.16\ \pm 0.20\ \pm 0.08$		² ABREU	99W	DLPH	$e^+e^- \rightarrow Z$		
	$1.19\ \pm 0.14\ \pm 0.07$		³ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$		
	$1.14 \ \pm 0.08 \ \pm 0.04$		⁴ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$		
	$1.11 \begin{array}{c} +0.19 \\ -0.18 \end{array} \pm 0.05$		⁵ ABREU	99W	DLPH	$e^+e^- \rightarrow Z$		
	$1.29 \begin{array}{c} +0.24 \\ -0.22 \end{array} \pm 0.06$		⁵ ACKERSTAFF	98 G	OPAL	$e^+e^- \rightarrow Z$		
	$1.20\ \pm 0.08\ \pm 0.06$		⁶ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$		
	$1.21 \ \pm 0.11$		⁵ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$		
	$1.32 \ \pm 0.15 \ \pm 0.07$		⁷ ABE	9 6M	CDF	<i>р</i> рат 1.8 ТеV		
	$1.46 \begin{array}{c} +0.22 \\ -0.21 \end{array} \begin{array}{c} +0.07 \\ -0.09 \end{array}$		ABREU	96 D	DLPH	Repl. by ABREU 99W		
	$1.10 \begin{array}{c} +0.19 \\ -0.17 \end{array} \pm 0.09$		⁵ ABREU	96 D	DLPH	$e^+e^- \rightarrow Z$		
	$1.16 \ \pm 0.11 \ \pm 0.06$		⁵ AKERS	96	OPAL	$e^+e^- \rightarrow Z$		
	$1.27 \begin{array}{c} +0.35 \\ -0.29 \end{array} \pm 0.09$		ABREU	95 S	DLPH	Repl. by ABREU 99W		
	$1.05 \begin{array}{c} +0.12 \\ -0.11 \end{array} \pm 0.09$	290	BUSKULIC	95L	ALEP	Repl. by BARATE 98D		
	$1.04 \begin{array}{c} +0.48 \\ -0.38 \end{array} \pm 0.10$	11	⁸ ABREU	93F	DLPH	Excess $\Lambda\mu^-$, decay lengths		
	$1.05 \begin{array}{c} +0.23 \\ -0.20 \end{array} \pm 0.08$	157	⁹ AKERS	93	OPAL	Excess $\Lambda \ell^-$, decay lengths		
	$1.12 \begin{array}{c} +0.32 \\ -0.29 \end{array} \pm 0.16$	101	¹⁰ BUSKULIC	921	ALEP	-		
	1		0			•		

¹Measured mean life using fully reconstructed $\Lambda_h^0 \rightarrow J/\psi \Lambda$ decays.

²Measured using $\Lambda \ell^-$ decay length.

³Measured using $p\ell^-$ decay length.

⁴ This ABREU 99W result is the combined result of the $\Lambda \ell^-$, $p\ell^-$, and excess $\Lambda \mu^-$ impact parameter measurements.

⁵ Measured using $\Lambda_c \ell^-$ and $\Lambda \ell^+ \ell^-$.

⁶Measured using the excess of $\Lambda \ell^-$, lepton impact parameter.

⁷ Measured using $\Lambda_c \ell^-$.

⁸ABREU 93F superseded by ABREU 96D.

https://pdg.lbl.gov

10

⁹AKERS 93 superseded by AKERS 96. ¹⁰BUSKULIC 921 superseded by BUSKULIC 95L.

b-baryon ADMIXTURE DECAY MODES $(\Lambda_b, \Xi_b, \Omega_b)$

These branching fractions are actually an average over weakly decaying *b*-baryons weighted by their production rates at the LHC, LEP, and Tevatron, branching ratios, and detection efficiencies. They scale with the *b*-baryon production fraction $B(b \rightarrow b$ -baryon).

The branching fractions B(*b*-baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything) and B($\Lambda_b^0 \rightarrow$

 $\Lambda_c^+ \ell^- \overline{\nu}_\ell$ anything) are not pure measurements because the underlying measured products of these with B($b \rightarrow b$ -baryon) were used to determine B($b \rightarrow b$ -baryon), as described in the note "Production and Decay of b-Flavored Hadrons."

For inclusive branching fractions, e.g., $B \rightarrow D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

	Mode	Fraction (Γ_i/Γ)	Scale factor
Γ_1	$p\mu^-\overline{ u}$ anything	(5.8 + 2.3) %	
Г ₄ Г ₅	$p\ell \overline{ u}_\ell$ anything p anything $\Lambda\ell^- \overline{ u}_\ell$ anything $\Lambda\ell^+ u_\ell$ anything Λ anything	$egin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Γ ₇	$\varXi^-\ell^-\overline{ u}_\ell$ anything	(4.6 \pm 1.4) $ imes$ 10 $^{-3}$	1.2

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) BRANCHING RATIOS

$\Gamma(p\mu^-\overline{ u})/\Gamma_{total}$						
VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT	
$5.8^{+2.2}_{-1.9}\pm0.8$	125	¹ ABREU	95 S	DLPH	$e^+e^- \rightarrow Z$	

¹ABREU 95S reports $[\Gamma(b\text{-baryon} \rightarrow p\mu^- \overline{\nu}\text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ = 0.0049 ± 0.0011^{+0.0015}_{-0.0011} which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(p\ell\overline{ u}_\ell$ anything)/ $\Gamma_{ m total}$					Γ_2/Γ
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
$5.6 \pm 0.9 \pm 0.7$	¹ BARATE	98v	ALEP	$e^+e^- \rightarrow Z$	

¹BARATE 98V reports [$\Gamma(b\text{-baryon} \rightarrow p\ell \overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = (4.72 ± 0.66 ± 0.44) × 10⁻³ which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

https://pdg.lbl.gov

$\Gamma(p\ell \overline{\nu}_{\ell} \text{ anything})/\Gamma(p \text{ anything})$

VALUE (%)	DOCUMENT ID	TECN	COMMENT
8.0±1.2±1.4	BARATE 98V	ALEP	$e^+e^- \rightarrow Z$

$\Gamma(\Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$

The values and averages in this section serve only to show what values result if one assumes our $B(b \rightarrow b$ -baryon). They cannot be thought of as measurements since the underlying product branching fractions were also used to determine $B(b \rightarrow b$ -baryon) as described in the note on "Production and Decay of *b*-Flavored Hadrons."

VALUE (%)	EVTS	DOCUMENT ID		TECN	COMMENT		
3.8±0.6 OUR AVERAGE							
$3.9\!\pm\!0.5\!\pm\!0.5$		¹ BARATE	98 D	ALEP	$e^+e^- \rightarrow Z$		
$3.5\!\pm\!0.4\!\pm\!0.5$		² AKERS	96	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$		
$3.6 {\pm} 0.9 {\pm} 0.5$	262	³ ABREU	95 S	DLPH	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$		
$7.3\!\pm\!1.4\!\pm\!1.0$	290	⁴ BUSKULIC	95L	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$		
ullet $ullet$ $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$							
seen	157	⁵ AKERS	93	OPAL	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$		
$8.3\!\pm\!2.5\!\pm\!1.1$	101	⁶ BUSKULIC	921	ALEP	Excess of $\Lambda\ell^-$ over $\Lambda\ell^+$		

¹BARATE 98D reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.00326 ± 0.00016 ± 0.00039 which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Measured using the excess of $\Lambda \ell^-$, lepton impact parameter.

- ²AKERS 96 reports [$\Gamma(b$ -baryon $\rightarrow \Lambda \ell^- \overline{\nu}_{\ell}$ anything)/ Γ_{total}] \times [B($\overline{b} \rightarrow b$ -baryon)] = 0.00291 \pm 0.00023 \pm 0.00025 which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = (8.4 \pm 1.1) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ABREU 95S reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0030 ± 0.0006 ± 0.0004 which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴ BUSKULIC 95L reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_\ell \text{anything})/\Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = 0.0061 ± 0.0006 ± 0.0010 which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁵ AKERS 93 superseded by AKERS 96.
- ⁶ BUSKULIC 92I reports $[\Gamma(b\text{-baryon} \rightarrow \Lambda \ell^- \overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ = 0.0070 ± 0.0010 ± 0.0018 which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Superseded by BUSKULIC 95L.

$\Gamma(\Lambda \ell^+ \nu_\ell \text{ anything}) / \Gamma(\Lambda \text{ anything})$

VALUE (units 10^{-2})DOCUMENT IDTECNCOMMENT8.0±1.2±0.8ABBIENDI99LOPAL $e^+e^- \rightarrow Z$ • • • We do not use the following data for averages, fits, limits, etc. • ••7.0±1.2±0.7ACKERSTAFF 97NOPALRepl. by ABBIENDI 99L

https://pdg.lbl.gov

 Γ_5/Γ_6

Г₄/Г

 Γ_2/Γ_3

Γ(Λanything)/Γ _{total}					Г ₆ /Г
VALUE (%)	DOCUMENT ID		TECN	COMMENT	
39± 7 OUR AVERAGE					
$42\pm$ 6 ± 5	¹ ABBIENDI	99L	OPAL	$e^+e^- \rightarrow Z$	•
$27^{+15}_{-9} \pm 3$	² ABREU	95 C	DLPH	$e^+e^- \rightarrow Z$	•

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $47\pm7\pm6$ ³ ACKERSTAFF 97N OPAL Repl. by ABBIENDI 99L

¹ABBIENDI 99L reports [$\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}$] × [$B(\overline{b} \rightarrow b\text{-baryon})$] = 0.035 ± 0.0032 ± 0.0035 which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ²ABREU 95C reports 0.28 $^{+0.17}_{-0.12}$ from a measurement of [$\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/$

²ABREU 95C reports $0.28^{+0.17}_{-0.12}$ from a measurement of $[\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})]$ assuming $B(\overline{b} \rightarrow b\text{-baryon}) = 0.08 \pm 0.02$, which we rescale to our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ACKERSTAFF 97N reports $[\Gamma(b\text{-baryon} \rightarrow \Lambda \text{anything})/\Gamma_{\text{total}}] \times [B(\overline{b} \rightarrow b\text{-baryon})] = 0.0393 \pm 0.0046 \pm 0.0037$ which we divide by our best value $B(\overline{b} \rightarrow b\text{-baryon}) = (8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\Xi^{-}\ell^{-}\overline{\nu}_{\ell} \text{ anything})/\Gamma_{\text{total}}$

VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 4.6±1.4 OUR AVERAGE Error includes scale factor of 1.2. 05C DLPH $e^+e^- \rightarrow Z^0$ ¹ ABDALLAH $3.6 \pm 1.2 \pm 0.5$ ² BUSKULIC 96T ALEP Excess $\Xi^- \ell^-$ over $\Xi^- \ell^+$ $6.4 \pm 1.6 \pm 0.8$ • • • We do not use the following data for averages, fits, limits, etc. • • • ³ ABREU $7.0 \pm 2.8 \pm 0.9$ 95V DLPH Repl. by ABDALLAH 05C ¹ABDALLAH 05C reports [$\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{ anything}) / \Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b$ baryon)] = $(3.0 \pm 1.0 \pm 0.3) \times 10^{-4}$ which we divide by our best value B($\overline{b} \rightarrow b$ -baryon)

 $= (8.4 \pm 1.1) \times 10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. ² BUSKULIC 96T reports [$\Gamma(b$ -baryon $\rightarrow \Xi^{-}\ell^{-}\overline{\nu}_{\ell}$ anything)/ Γ_{total}] \times [B($\overline{b} \rightarrow b$ -

bosocial solution between the points in (b-baryon $\rightarrow = e^{-b} b_{\ell}$ anything)/ $r_{total} \ge e^{-b} b_{total}$ baryon)] = $(5.4 \pm 1.1 \pm 0.8) \times 10^{-4}$ which we divide by our best value B($\overline{b} \rightarrow b$ -baryon) = $(8.4 \pm 1.1) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ABREU 95V reports [$\Gamma(b\text{-baryon} \rightarrow \Xi^- \ell^- \overline{\nu}_\ell \text{ anything})/\Gamma_{\text{total}}$] × [B($\overline{b} \rightarrow b\text{-baryon}$)] = (5.9 ± 2.1 ± 1.0) × 10⁻⁴ which we divide by our best value B($\overline{b} \rightarrow b\text{-baryon}$) = (8.4 ± 1.1) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

b-baryon ADMIXTURE (Λ_b , Ξ_b , Ω_b) REFERENCES

ABAZOV ABAZOV		PR D85 112003 PRL 99 142001	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.) (D0 Collab.)
ABAZOV	05C	PRL 94 102001	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABDALLAH	05C	EPJ C44 299	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABBIENDI	99L	EPJ C9 1	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABREU	99W	EPJ C10 185	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACKERSTAFF	98G	PL B426 161	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
BARATE	98D	EPJ C2 197	R. Barate <i>et al.</i>	(ALEPH Collab.)

https://pdg.lbl.gov

Page 4

Created: 8/11/2022 09:39

 Γ_7/Γ

BARATE	98V	EPJ C5 205	R. Barate <i>et al.</i>	(ALEPH Collab.)
ACKERSTAFF	97N	ZPHY C74 423	K. Ackerstaff <i>et al.</i>	(OPAL Collab.)
ABE	96M	PRL 77 1439	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU	96D	ZPHY C71 199	P. Abreu <i>et al.</i>	(DELPHI Collab.)
AKERS	96	ZPHY C69 195	R. Akers <i>et al.</i>	`(OPAL Collab.)
BUSKULIC	96T	PL B384 449	D. Buskulic et al.	(ALEPH Collab.)
ABREU	95C	PL B347 447	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95S	ZPHY C68 375	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	95V	ZPHY C68 541	P. Abreu <i>et al.</i>	(DELPHI Collab.)
BUSKULIC	95L	PL B357 685	D. Buskulic et al.	(ALEPH Collab.)
ABREU	93F	PL B311 379	P. Abreu <i>et al.</i>	(DELPHI Collab.)
AKERS	93	PL B316 435	R. Akers <i>et al.</i>	(OPAL Collab.)
BUSKULIC	92I	PL B297 449	D. Buskulic et al.	(ALEPH Collab.)

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)