$\chi_{b1}(1P)$

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

J needs confirmation.

Observed in radiative decay of the $\Upsilon(2S)$, therefore C = +. Branching ratio requires E1 transition, M1 is strongly disfavored, therefore P = +. J = 1 from SKWARNICKI 87.

$\chi_{b1}(1P)$ MASS

VALUE (MeV)

DOCUMENT ID

9892.78±0.26±0.31 OUR EVALUATION From average γ energy below, using $\Upsilon(2S)$ mass = 10023.26 ± 0.31 MeV

γ ENERGY IN $\Upsilon(2S)$ DECAY

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
129.63 \pm 0.33 OUR AVERAGE	Error includes scale f	factor	of 1.3.	See the ideogram below
$129.58\!\pm\!0.09\!\pm\!0.29$	ARTUSO	05 (CLEO	$\Upsilon(2S) ightarrow \gamma X$
$128.8\ \pm 0.4\ \pm 0.6$	EDWARDS	99 (CLE2	$\Upsilon(2S) ightarrow \gamma \chi(1P)$
$131.7 \ \pm 0.9 \ \pm 1.3$	WALK	86 (CBAL	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$
$131.7\ \pm 0.3\ \pm 1.1$	ALBRECHT	85e /	ARG	$\Upsilon(2S) ightarrow { m conv.} \gamma { m X}$
$130.6 \pm 0.8 \pm 2.4$	NERNST	85 (CBAL	$\Upsilon(2S) ightarrow \ \gamma X$
$129 \pm 0.8 \ \pm 1$	HAAS	84 (CLEO	$\Upsilon(2S) ightarrow \operatorname{conv.} \gamma X$
$128.1 \ \pm 0.4 \ \pm 3.0$	KLOPFEN	83 (CUSB	$\Upsilon(2S) ightarrow \ \gamma {\sf X}$
130.6 ± 3.0	PAUSS	83 (CUSB	$\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^-$

	Mode	Fraction (Γ_i/Γ_i)	-)	Confidence level
Γ_1	$\gamma \gamma \gamma (1S)$	(35.2 ±2.0) %	
Г2	$D^0 X$	(12.6 ± 2.2))%	
Γ ₃	$\pi^+\pi^-K^+K^-\pi^0$	($2.0~\pm0.6$	$) \times 10^{-1}$	4
Γ ₄	$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}$	(1.3 ± 0.5	$) \times 10^{-1}$	4
Γ ₅	$2\pi^{+}\pi^{-}K^{-}K^{0}_{S}2\pi^{0}$	< 6	$\times 10^{-}$	4 90%
Г ₆	$2\pi^+2\pi^-2\pi^0$	(8.0 ± 2.5	$) \times 10^{-1}$	4
Γ ₇	$2\pi^+ 2\pi^- K^+ K^-$	($1.5~\pm0.5$	$) \times 10^{-1}$	4
Г ₈	$2\pi^+ 2\pi^- K^+ K^- \pi^0$	(3.5 ± 1.2	$) \times 10^{-1}$	4
Г9	$2\pi^+ 2\pi^- K^+ K^- 2\pi^0$	(8.6 ± 3.2	$) \times 10^{-1}$	4
Γ ₁₀	$3\pi^+ 2\pi^- K^- K^0_S \pi^0$	(9.3 \pm 3.3	$) \times 10^{-1}$	4
Γ_{11}	$3\pi^+3\pi^-$	($1.9~\pm0.6$	$) \times 10^{-1}$	4
Γ_{12}	$3\pi^+3\pi^-2\pi^0$	($1.7~\pm0.5$	$) \times 10^{-1}$	3
Γ ₁₃	$3\pi^+ 3\pi^- K^+ K^-$	($2.6~\pm0.8$	$) \times 10^{-1}$	4
Γ_{14}	$3\pi^+ 3\pi^- K^+ K^- \pi^0$	(7.5 ± 2.6	$) \times 10^{-1}$	4
Γ_{15}	$4\pi^+4\pi^-$	(2.6 ± 0.9	$) \times 10^{-1}$	4
Γ_{16}	$4\pi^+ 4\pi^- 2\pi^0$	($1.4~\pm0.6$	$) \times 10^{-1}$	3
Γ_{17}	ω anything	(4.9 ± 1.4) %	
Γ ₁₈	ωX_{tetra}	< 4.44	$\times 10^{-}$	4 90%
Γ ₁₉	${\sf J}/\psi{\sf J}/\psi$	< 2.7	$\times 10^{-}$	5 90%
Γ ₂₀	$J/\psi \psi(2S)$	< 1.7	$\times 10^{-}$	5 90%
Γ ₂₁	$\psi(2S)\psi(2S)$	< 6	$\times 10^{-}$	5 90%
Γ ₂₂	$J/\psi(1S)$ anything	< 1.1	$\times 10^{-}$	3 90%
Γ ₂₃	$J/\psi(1S)X_{tetra}$	< 2.27	$\times 10^{-}$	4 90%

$\chi_{b1}(1P)$ DECAY MODES

$\chi_{b1}(1P)$ BRANCHING RATIOS

 $\Gamma(\gamma \Upsilon(1S))/\Gamma_{\text{total}}$ Γ_1/Γ **EVTS** DOCUMENT ID TECN COMMENT 0.352 ± 0.020 OUR AVERAGE $0.356^{\,+\,0.016}_{\,-\,0.022}{\pm}0.019$ 964k ¹ FULSOM 18 BELL $\Upsilon(2S) \rightarrow \gamma X$ ^{2,3,4} LEES 14M BABR $\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^ 0.364 \pm 0.017 \pm 0.019$ 11 CLEO $e^+e^- \rightarrow \gamma\gamma\ell^+\ell^-$ ^{4,5} KORNICER $0.331 \pm 0.018 \pm 0.017$ 3222 ⁶ LEES 11J BABR $\Upsilon(2S) \rightarrow X \gamma$ $0.350 \pm 0.023 \pm 0.018$ 13k 53 ^{4,7,8} WALK 86 CBAL $\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^ 0.34 \ \pm 0.07 \ \pm 0.02$ 83 CUSB $\Upsilon(2S) \rightarrow \gamma \gamma \ell^+ \ell^ 0.47 \pm 0.18$ KLOPFEN

¹ FULSOM 18 reports $[\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] = (2.45 \pm 0.02^{+0.11}_{-0.15}) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

²LEES 14M quotes $\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{\text{total}} \times \Gamma(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))/\Gamma_{\text{total}} = (2.51 \pm 0.12)$ % combining the results from samples of $\Upsilon(2S) \rightarrow \gamma \gamma \mu^+ \mu^-$ with and without converted photons.

- ³LEES 14M reports $[\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] = (2.51 \pm 0.12) \times 10^{-2}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴Assuming B($\Upsilon(1S) \rightarrow \mu^+ \mu^-$) = (2.48 ± 0.05)%.
- ⁵ KORNICER 11 reports $[\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))]$ = $(22.8 \pm 0.4 \pm 1.2) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))$ = $(6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁶LEES 11J reports $[\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] = (24.1 \pm 0.6 \pm 1.5) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁷ WALK 86 quotes B($\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)$)×B($\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S)$) × B($\Upsilon(1S) \rightarrow \ell^+ \ell^-$) = (5.8 ± 0.9 ± 0.7) %.
- ⁸ WALK 86 reports $[\Gamma(\chi_{b1}(1P) \rightarrow \gamma \Upsilon(1S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))] = (23.4 \pm 3.63 \pm 2.82) \times 10^{-3}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D^0 X) / \Gamma_{\text{total}}$

 Γ_2/Γ

VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT
12.6±1.9±1.1	2310	¹ BRIERE	08	CLEO	$\Upsilon(2S) \rightarrow \gamma D^0 X$
$^1{ m For}{ m p}_{D^0}>2.5{ m GeV}$	′/c.				

$\Gamma(2\pi^+\pi^-K^-k)$	< ⁰ _S 2π ⁰)/Γ _{total}				Г ₅ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID	TEC	CN (COMMENT	
<6	90	¹ ASNER	08A CL	EO	$\Upsilon(2S) \rightarrow \gamma 2\pi^+ \pi^-$	$-K^{-}2\pi^{0}$
¹ ASNER 08A	reports	$[\Gamma(\chi_{b1}(1P) \rightarrow 2\pi)]$	$+\pi^{-}K^{-}$	$\kappa_{S}^{0}2$	$\pi^0)/\Gamma_{total}] \times [B($	$\Upsilon(2S) \rightarrow$
$\gamma \chi_{b1}(1P))] < = 6.9 \times 10^{-2}$	< 42 ×	10^{-6} which we divide	e by our b	best va	alue B($\Upsilon(2S) ightarrow \gamma$	$\chi_{b1}(1P))$

$\Gamma(2\pi^+ 2\pi^- 2\pi^0)$	/Γ _{total}					Г ₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
8.0±2.4±0.4	46	¹ ASNER	08A	CLEO	$\Upsilon(2S) ightarrow$	$\gamma 2\pi + 2\pi - 2\pi^{0}$
¹ ASNER 08A repo	orts [$\Gamma(\chi_{B}$	$_{01}(1P) \rightarrow 2\pi^+ 2\pi^-$	$-2\pi^{0})$	$/\Gamma_{total}]$	$ imes$ [B(Υ (25	$(5) \rightarrow \gamma \chi_{b1}(1P))]$
$=$ (55 \pm 9 \pm 14	$(1) \times 10^{-6}$	⁵ which we divide b	by our	best val	ue B($\Upsilon(2S)$	$\gamma \gamma \chi_{b1}(1P))$
$=$ (6.9 \pm 0.4) $ imes$ the systematic e	10 ^{—2} . O rror from	our first error is thei using our best valu	r expe ue.	eriment's	error and c	our second error is
$\Gamma(2\pi^+2\pi^-K^+K)$	$(-)/\Gamma_{tot}$	tal				Г ₇ /Г

$\Gamma(2\pi^+ 2\pi^- K^+ K^-)/\Gamma_{\text{total}}$

$ALUE$ (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$1.5 \pm 0.5 \pm 0.1$	18	¹ ASNER	08A	CLEO	$\Upsilon(2S) \rightarrow \gamma 2\pi^+ 2\pi^- K^+ K^-$
¹ ASNER 08A	reports	$[\Gamma(\chi_{b1}(1P) \rightarrow$	$2\pi^{+2}$	$2\pi^- K^+$	$(\kappa^{-})/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow$
$\gamma \chi_{b1}(1P))]$:	= (10 \pm	$3\pm2) imes10^{-6}$ w	/hich w	/e divide	by our best value B($\Upsilon(2S)$ $ ightarrow$
$\gamma \chi_{b1}(1P)) =$ second error i	= (6.9 \pm s the sys	0.4) $ imes$ 10 ^{-2} . Ou tematic error from	r first using	error is t our best	their experiment's error and our value.

$\Gamma(2\pi^+2\pi^-K^+K^-\pi^0)/\Gamma_{\text{total}}$

VALUE (units 10^{-4}) <u>EVTS</u> DOCUMENT ID TECN COMMENT 08A CLEO $\Upsilon(2S) \rightarrow \gamma 2\pi^+ 2\pi^- \kappa^+ \kappa^- \pi^0$ ¹ ASNER $3.5 \pm 1.2 \pm 0.2$ 22 ¹ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 2\pi^+ 2\pi^- \kappa^+ \kappa^- \pi^0)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \chi_{b1}(1P))] = (24 \pm 6 \pm 6) \times 10^{-6}$ which we divide by our best value $B(\Upsilon(2S) \rightarrow 2\pi^+ 2\pi^- \kappa^+ \kappa^- \pi^0)/\Gamma_{total}$ $\gamma \chi_{b1}(1P)$ = (6.9 ± 0.4) × 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\begin{split} & \Gamma\left(2\pi^+2\pi^-K^+K^-2\pi^0\right)/\Gamma_{\text{total}} & \Gamma_{\text{g}}/\Gamma \\ & \frac{VALUE \,(\text{units }10^{-4})}{8.6\pm3.2\pm0.4} & \frac{EVTS}{26} & \frac{DOCUMENT \,ID}{1 \,\text{ASNER}} & \frac{TECN}{08A} & \frac{COMMENT}{\Gamma(2S)} & \frac{COMMENT}{\gamma(2S)} \rightarrow \gamma 2\pi^+ 2\pi^- K^+ K^- 2\pi^0} \\ & ^1\text{ASNER }08A \text{ reports } \left[\Gamma\left(\chi_{b1}(1P) \rightarrow 2\pi^+ 2\pi^- K^+ K^- 2\pi^0\right)/\Gamma_{\text{total}}\right] \times \left[\text{B}(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))\right] = (59 \pm 14 \pm 17) \times 10^{-6} \text{ which we divide by our best value } \text{B}(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}. \text{ Our first error is their experiment's error and our second error is the systematic error from using our best value.} \end{split}$$

 $1.9 \pm 0.6 \pm 0.1$ ¹ ASNER 08A CLEO $\Upsilon(2S) \rightarrow \gamma 3\pi^+ 3\pi$ 25 ¹ASNER 08A reports $[\Gamma(\chi_{b1}(1P) \rightarrow 3\pi^+ 3\pi^-)/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P))]$ = $(13 \pm 3 \pm 3) \times 10^{-6}$ which we divide by our best value B($\Upsilon(2S) \rightarrow \gamma \chi_{b1}(1P)$) = $(6.9 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

https://pdg.lbl.gov

Created: 8/11/2022 09:37

 Γ_8/Γ

$\Gamma(3\pi^+ 3\pi^- 2\pi^0)$	/Γ _{total}					Г ₁₂ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
17±5±1	56	¹ ASNER	08A	CLEO	$\Upsilon(2S) ightarrow$	$\gamma_{3\pi}^{+}_{3\pi}^{-}_{2\pi}^{0}$
¹ ASNER 08A rep = $(119 \pm 18 \pm$ = (6.9 ± 0.4) > the systematic	forts [$\Gamma(\chi_b)$ 32) × 10 ⁻¹ × 10 ⁻² . Out error from	$(1P) \rightarrow 3\pi^+ 3\pi^-$ ⁶ which we divide ur first error is their using our best value	$(2\pi^0)$, by our r expense.	/F _{total}] best va riment's	imes [B($arphi(2S)lue B(arphi(2S)error and o$	$() ightarrow \gamma \chi_{b1}(1P))] ightarrow \gamma \chi_{b1}(1P))$ ur second error is
		0				- /-

	<i>``)/</i> ·	total					' 13/ '
VALUE (units 10^{-4})	EVTS	DOCUMENT I	D	TECN	COMMENT		
2.6±0.8±0.1	21	¹ ASNER	08A	CLEO	$\Upsilon(2S) ightarrow$	$\gamma 3\pi^+ 3\pi^-$	- K ⁺ K ⁻
¹ ASNER 08A $\gamma \chi_{b1}(1P))] =$	reports = (18 \pm	$ \begin{array}{l} [\Gamma(\chi_{b1}(1P) \rightarrow \\ 4 \pm 4) \times 10^{-6} \end{array} $	$3\pi^+3$ which w	$3\pi^- K^+$ ve divide	$(K^-)/\Gamma_{tota}$ by our best] × [B(7 t value B(7	arphi(2S) ightarrow arphi arphi(2S) ightarrow
$\gamma \chi_{b1}(1P)) =$ second error i	= (6.9 \pm s the sys	$0.4) \times 10^{-2}$. C tematic error from	Our first m using	error is our best	their experin value.	ment's erro	r and our

$\Gamma(3\pi^+3\pi^-K^+K^-\pi^0)/\Gamma_{total}$

Г₁₄/Г

 $\begin{array}{c|c} \underline{VALUE \ (\text{units } 10^{-4})} & \underline{EVTS} \\ \hline \textbf{7.5 \pm 2.6 \pm 0.4} & \underline{28} \\ \end{array} \begin{array}{c} 1 \\ ASNER \\ \hline \textbf{28} \\ \end{array} \begin{array}{c} 1 \\ ASNER \\ \hline \textbf{08A} \\ \end{array} \begin{array}{c} \underline{TECN} \\ \hline \textbf{CLEO} \\ \hline \textbf{CLEO} \\ \hline \textbf{7}(2S) \rightarrow \\ \gamma 3\pi^{+} 3\pi^{-} \\ K^{+} \\ K^{-} \\ \pi^{0} \\ \end{bmatrix} \\ \times \\ \begin{bmatrix} \textbf{B}(\\ \textbf{7}(2S) \rightarrow \\ \gamma \\ \textbf{3}\pi^{+} \\ \textbf{3}\pi^{-} \\ K^{+} \\ K^{-} \\ \pi^{0} \\ \end{bmatrix} / \\ \Gamma_{\text{total}} \\ \end{bmatrix} \\ \times \\ \begin{array}{c} \textbf{B}(\\ \textbf{7}(2S) \rightarrow \\ \gamma \\ \chi_{b1}(1P) \\ \end{bmatrix} \\ = (52 \pm 11 \pm 14) \times 10^{-6} \\ \text{which we divide by our best value } \\ \textbf{B}(\\ \textbf{7}(2S) \rightarrow \\ \gamma \\ \chi_{b1}(1P) \\ \end{bmatrix} \\ = (6.9 \pm 0.4) \times 10^{-2}. \\ \begin{array}{c} \textbf{Our first error is their experiment's error and our second error is the systematic error from using our best value. \end{array}$

$\Gamma(\omega \text{ anything})/\Gamma_{\text{tota}}$	I					Г ₁₇ /Г
VALUE (units 10^{-2})	EVTS	DOCUMENT ID		TECN	COMMENT	
4.9±1.3±0.6	51k	JIA	17A	BELL	$e^+e^- ightarrow$ ha	adrons

$\Gamma(\omega X_{tetra})/\Gamma_{total}$						Г ₁₈ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<44.4 × 10 ⁻⁵	90	¹ JIA	17A	BELL	$e^+e^- \rightarrow$	hadrons

¹ For a tetraquark state X_{tetra} , with mass in the range 1.16–2.46 GeV and width in the range 0–0.3 GeV. Measured 90% CL limits as a function of X_{tetra} mass and width range from 3.3×10^{-5} to 44.4×10^{-5} .

$\Gamma(J/\psi J/\psi)/\Gamma_{total}$

VALUE (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT
<2.7	90	¹ SHEN	12	BELL	$\Upsilon(2S) ightarrow \gamma \psi X$
1 SHEN 12 reports $<$ 2	2.7×10	$^{-5}$ from a measureme	ent of	$F[\Gamma(\chi_{b1}($	$(1P) \rightarrow J/\psi J/\psi / \Gamma_{\text{total}}$
$ imes$ [B(Υ (2 <i>S</i>) $ ightarrow \gamma \chi$	b1(1P))] assuming B($\Upsilon(2S)$	$) \rightarrow $	$\gamma \chi_{b1}(1F)$	$P)) = (6.9 \pm 0.4) \times 10^{-2}.$

$\Gamma(J/\psi\psi(2S))/\Gamma_{\text{total}}$

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<1.7	90	¹ SHEN	12	BELL	$\Upsilon(2S) ightarrow \overline{\gamma \psi X}$

¹SHEN 12 reports < 1.7 × 10⁻⁵ from a measurement of $[\Gamma(\chi_{b1}(1P) \rightarrow J/\psi\psi(2S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P))]$ assuming $B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$.

$\Gamma(\psi(2S)\psi(2S))/\Gamma_{\text{total}}$

l 21/l	
--------	--

 Γ_{19}/Γ

 Γ_{20}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT
<6	90	¹ SHEN	12	BELL	$\Upsilon(2S) ightarrow \gamma \psi X$
1 систи то		5 6			

¹SHEN 12 reports $< 6.2 \times 10^{-5}$ from a measurement of $[\Gamma(\chi_{b1}(1P) \rightarrow \psi(2S)\psi(2S))/\Gamma_{total}] \times [B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P))]$ assuming $B(\Upsilon(2S) \rightarrow \gamma\chi_{b1}(1P)) = (6.9 \pm 0.4) \times 10^{-2}$.

$\Gamma(J/\psi(1S))$ any this	ing)/Γ _{total}					Г ₂₂ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
<1.1 × 10 ⁻³	90	JIA	17A	BELL	$e^+ e^- \rightarrow$	hadrons
$\Gamma(J/\psi(1S)X_{tetra})$)/Г _{total}					Г ₂₃ /Г
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<22.7 × 10 ⁻⁵	90	¹ JIA	17A	BELL	$e^+e^- \rightarrow$	hadrons

¹ For a tetraquark state X_{tetra} , with mass in the range 1.16–2.46 GeV and width in the range 0–0.3 GeV. Measured 90% CL limits as a function of X_{tetra} mass and width range from 1.8×10^{-5} to 22.7×10^{-5} .

$\chi_{b1}(1P)$ Cross-Particle Branching Ratios

$\Gamma(\chi_{b1}(1P) \rightarrow \gamma \gamma)$	$(1S))/\Gamma_{total}$	× Γ(<i>Υ</i> (2 <i>S</i>)	$\rightarrow \gamma$	χ _{b1} (1Р Г	$\mathcal{P}))/\Gamma_{\text{total}}$	²⁵⁾ /Γ ^{Υ(25)}
VALUE (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	/-
24.1±0.6±1.5	13k	LEES	11J	BABR	$\Upsilon(2S) ightarrow$	Xγ

BRIERE

07

 $1.11 \pm 0.15 \pm 0.20$

https://pdg.lbl.gov

CLEO $\Upsilon(2S) \rightarrow \gamma \chi_{b,I}(1P)$

$\chi_{b1}(1P)$ REFERENCES

FULSOM JIA LEES SHEN KORNICER LEES ASNER BRIERE BRIERE BRIERE ARTUSO EDWARDS SKWARNICKI WALK ALBRECHT NERNST HAAS	18 17A 14M 12 11 11J 08A 08 07 05 99 87 86 85 85 85 85 84 82	PRL 121 232001 PR D96 112002 PR D90 112010 PR D85 071102 PR D83 054003 PR D84 072002 PR D78 091103 PR D78 092007 PR D76 012005 PRL 94 032001 PR D59 032003 PRL 58 972 PR D34 2611 PL 160B 331 PRL 54 2195 PRL 52 799 PRL 52 799	 B.G. Fulsom et al. S. Jia et al. J.P. Lees et al. C.P. Shen et al. M. Kornicer et al. J.P. Lees et al. D.M. Asner et al. R.A. Briere et al. R.A. Briere et al. M. Artuso et al. K.W. Edwards et al. T. Skwarnicki et al. W.S. Walk et al. H. Albrecht et al. R. Nernst et al. J. Haas et al. C. Kleinerst et al. 	(BELLE Collab.) (BELLE Collab.) (BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (Crystal Ball Collab.)
HAAS	84 83	PRL 52 799 PRI 51 160	J. Haas <i>et al.</i>	(CLEO Collab.) (CLSB Collab.)
PAUSS	83	PL 130B 439	F. Pauss <i>et al.</i>	(MPIM, COLU, CORN, LSU+)