New Heavy Bosons (W', Z', leptoquarks, etc.), Searches for

We list here various limits on charged and neutral heavy vector bosons (other than W's and Z's), heavy scalar bosons (other than Higgs bosons), vector or scalar leptoquarks, and axigluons. The latest unpublished results are described in "W' Searches" and "Z' Searches" reviews. For recent searches on scalar bosons which could be identified as Higgs bosons, see the listings in the Higgs boson section.

CONTENTS:

```
Mass Limits for W' (Heavy Charged Vector Boson Other Than W) in Hadron Collider
W_R (Right-Handed W Boson) Mass Limits
Limit on W_I-W_R Mixing Angle \zeta
Mass Limits for Z' (Heavy Neutral Vector Boson Other Than Z)
     \begin{array}{l} - \text{ Limits for } Z_{\text{SM}}^{'} \\ - \text{ Limits for } Z_{LR}^{'} \end{array}

 Limits for Z

     - Limits for Z
     - Limits for Z_{\psi}
- Limits for Z_{\eta}
     - Limits for other Z'
     - Searches for Z' with Lepton-Flavor-Violating decays
Indirect Constraints on Kaluza-Klein Gauge Bosons
Mass Limits for Leptoquarks from Pair Production
Mass Limits for Leptoquarks from Single Production
Indirect Limits for Leptoquarks
Mass Limits for Diquarks
Mass Limits for g_A (axigluon) and Other Color-Octet Gauge Bosons
Mass Limits for Color-Octet Scalar Bosons
X^0 (Heavy Boson) Searches in Z Decays
Mass Limits for a Heavy Neutral Boson Coupling to e^+e^-
Search for X^0 Resonance in e^+e^- Collisions
Search for X^0 Resonance in ep Collisions
Search for X^0 Resonance in Two-Photon Process
Search for X^0 Resonance in e^+e^- \rightarrow X^0 \gamma
Search for X^0 Resonance in Z \rightarrow f f X^0
Search for X^0 Resonance in WX^0 final state
Search for X^0 Resonance in Quarkonium Decays
```

See the related review(s):

W'-Boson Searches

MASS LIMITS for W' (Heavy Charged Vector Boson Other Than W) in Hadron Collider Experiments

Couplings of W' to quarks and leptons are taken to be identical with those of W. The following limits are obtained from $p\overline{p}$ or $pp \to W'X$ with W' decaying to the mode

indicated in the comments. New decay channels (e.g., $W' \to WZ$) are assumed to be suppressed. The most recent preliminary results can be found in the "W'-boson searches" review above.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>6000 (CL = 95%	6) OUR LIMIT			
none 1000-3400	95	¹ SIRUNYAN	21Y CMS	W' ightarrow tb
>3200	95	² AAD	20AJ ATLS	$W' \rightarrow WH$
>4300	95	³ AAD	20AT ATLS	$W' \rightarrow WZ$
none 1100-4000	95	⁴ AAD	20T ATLS	$W' o q \overline{q}$
none 1800-3600	95	⁵ SIRUNYAN	20AI CMS	$W' o q \overline{q}$
none 1200-3800	95	⁶ SIRUNYAN	20Q CMS	$W' \rightarrow WZ$
		⁷ AABOUD	19B ATLS	$W' ightarrow \ N\ell ightarrow \ \ell\ell jj$
none 500-3250	95	⁸ AABOUD	19E ATLS	W' ightarrow tb
>6000	95	⁹ AAD	19C ATLS	$W' o$ e $ u$, μu
none 1300-3600	95	¹⁰ AAD	19D ATLS	$W' \rightarrow WZ$
none 400-4000	95	¹¹ SIRUNYAN	19AY CMS	W' ightarrow au u
>4300	95	¹² SIRUNYAN	19CP CMS	$W' \rightarrow WZ, WH, \ell \nu$
>2600	95	¹³ SIRUNYAN	19ı CMS	$W' \rightarrow WH$
none 1000-3000	95	¹⁴ AABOUD	18AF ATLS	W' ightarrow tb
none 500-2820	95	¹⁵ AABOUD	18AI ATLS	$W' \rightarrow WH$
none 300-3000	95	¹⁶ AABOUD	18AK ATLS	$W' \rightarrow WZ$
none 800-3200	95	¹⁷ AABOUD	18AL ATLS	$W' \rightarrow WZ$
>5100	95	¹⁸ AABOUD	18BG ATLS	$W' o$ e $ u$, μu
none 250-2460	95	¹⁹ AABOUD	18CH ATLS	$W' \rightarrow WZ$
none 1200-3300	95	²⁰ AABOUD	18F ATLS	$W' \rightarrow WZ$
none 500-3700	95	²¹ AABOUD	18K ATLS	$W' \rightarrow \tau \nu$
none 1000-3600	95	²² SIRUNYAN	18 CMS	$W' \rightarrow tb$
none 1000–3050	95	²³ SIRUNYAN	18AX CMS	$W' \rightarrow WZ$
none 400-5200	95	²⁴ SIRUNYAN	18AZ CMS	$W' o$ e $ u$, μu
none 1000–3400	95	²⁵ SIRUNYAN	18BK CMS	$W' \rightarrow WZ$
none 600-3300	95	²⁶ SIRUNYAN	18BO CMS	$W' \rightarrow q \overline{q}$
none 900–4400	95	²⁷ SIRUNYAN	18cv CMS	$W' o N\ell o \ell\ell jj$
none 800-2330	95	²⁸ SIRUNYAN	18DJ CMS	$W' \rightarrow WZ$
>2800	95	²⁹ SIRUNYAN	18ED CMS	$W' \rightarrow WH$
none 1200–3200, 3300–3600	95	³⁰ SIRUNYAN	18P CMS	$W' \rightarrow WZ$
>3600	95	31 AABOUD	17AK ATLS	$W' \rightarrow q \overline{q}$
none 1100-2500	95	32 AABOUD		$W' \rightarrow WH$
>2220	95	33 AABOUD		$W' \rightarrow WH$
>2300	95	³⁴ KHACHATRY.	17J CMS	$W' \rightarrow N_{\tau} \tau \rightarrow \tau \tau j j$
none 600-2700	95	³⁵ KHACHATRY.		
>4100	95	³⁶ KHACHATRY.		•
>2200	95	³⁷ SIRUNYAN	17A CMS	$W' \rightarrow WZ$
>2300	95	38 SIRUNYAN	17AK CMS	•
>2900	95	39 SIRUNYAN	17H CMS	
>2600	95	40 SIRUNYAN	17ı CMS	
>2450	95	41 SIRUNYAN		$W' \rightarrow WH$
none 2780-3150	95	41 SIRUNYAN		$W' \rightarrow WH$
>2600	95	⁴² AABOUD	16AE ATLS	$W' \rightarrow WZ$

```
43 AABOUD
>4070
                                95
                                                                   16V ATLS
                                                                                    W' \rightarrow e \nu, \mu \nu
                                           44 AAD
>1810
                                95
                                                                   16R ATLS
                                                                                    W' \rightarrow WZ
                                           <sup>45</sup> AAD
                                                                                    W' \rightarrow q \overline{q}
                                                                   16S
                                                                        ATLS
>2600
                                95
                                           <sup>46</sup> KHACHATRY...16A0 CMS
                                                                                    W' \rightarrow tb
>2150
                                95
                                           <sup>47</sup> KHACHATRY...16AP CMS
                                                                                    W' \rightarrow WH
                                95
none 1000-1600
                                           48 KHACHATRY...16BD CMS
                                                                                    W' \rightarrow WH \rightarrow b\overline{b}\ell\nu
none 800-1500
                                95
                                           <sup>49</sup> KHACHATRY...16K CMS
none 1500-2600
                                95
                                                                                    W' \rightarrow q \overline{q}
                                           <sup>50</sup> KHACHATRY...16L CMS
                                                                                    W' \rightarrow a \overline{a}
none 500-1600
                                95
                                           <sup>51</sup> KHACHATRY...160 CMS
none 300-2700
                                95
                                                                                    W' \rightarrow \tau \nu
                                           <sup>52</sup> AAD
                                95
                                                                   15AU ATLS
                                                                                    W' \rightarrow WZ
none 400-1590
                                           <sup>53</sup> AAD
                                                                   15AV ATLS
                                                                                    W' \rightarrow tb
none 1500-1760
                                95
                                           <sup>54</sup> AAD
none 300-1490
                                95
                                                                   15AZ ATLS
                                                                                    W' \rightarrow WZ
                                           <sup>55</sup> AAD
                                                                                    W' \rightarrow WZ
                                95
                                                                   15CP ATLS
none 1300-1500
                                           <sup>56</sup> AAD
none 500-1920
                                95
                                                                   15R ATLS
                                                                                    W' \rightarrow tb
                                           <sup>57</sup> AAD
                                                                   15V ATLS
                                                                                    W' \rightarrow q \overline{q}
none 800-2450
                                95
                                           <sup>58</sup> KHACHATRY...15C CMS
>1470
                                95
                                                                                    W' \rightarrow WZ
                                           <sup>59</sup> KHACHATRY...15⊤ CMS
                                95
                                                                                    W' \rightarrow e \nu, \mu \nu
>3710
                                           <sup>60</sup> KHACHATRY...140 CMS
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell jj
none 1000-3010
                                95
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                           61 AAD
                                                                                    W' \rightarrow JJ
                                                                   20AD ATLS
                                           62 AAD
                                                                                    W' \rightarrow WZ' \rightarrow \ell \nu q \overline{q}
                                                                   20W ATLS
                                                                                    W' \rightarrow N\ell \rightarrow j\ell\ell
                                           <sup>63</sup> AABOUD
                                                                   19BB ATLS
                                           <sup>64</sup> SIRUNYAN
                                                                   19V CMS
                                                                                    W' \rightarrow Bt, Tb
                                           <sup>65</sup> AABOUD
                                                                   18AA ATLS
                                                                                    W' \rightarrow W \gamma
                                           66 AABOUD
                                                                                    W' \rightarrow HX
                                                                   18AD ATLS
                                           67 AABOUD
                                                                                    W' \rightarrow WZ, WH, \ell\nu
>4500
                                95
                                                                   18CJ ATLS
                                           68 KHACHATRY...17U CMS
                                                                                    W' \rightarrow WH
                                           <sup>69</sup> AAD
                                                                   15BB ATLS
                                                                                    W' \rightarrow WH
                                           <sup>70</sup> AALTONEN
none 300-880
                                95
                                                                   15C CDF
                                                                                    W' \rightarrow tb
                                           <sup>71</sup> KHACHATRY...15v CMS
none 1200-1900 and
                                95
                                                                                    W' \rightarrow q \overline{q}
   2000-2200
                                95
                                               AAD
                                                                   14AI ATLS
                                                                                    W' \rightarrow e \nu, \mu \nu
>3240
                                           72 AAD
                                                                   14AT ATLS
                                                                                    W' \rightarrow W \gamma
                                           73 <sub>AAD</sub>
none 200-1520
                                95
                                                                   14S
                                                                        ATLS
                                                                                    W' \rightarrow WZ
                                           <sup>74</sup> KHACHATRY...14
none 1000-1700
                                95
                                                                         CMS
                                                                                    W' \rightarrow WZ
                                           <sup>75</sup> KHACHATRY...14A CMS
                                                                                    W' \rightarrow WZ
                                           <sup>76</sup> AAD
                                                                                    W' \rightarrow WZ
none 500-950
                                95
                                                                   13AO ATLS
                                                                                    W' \rightarrow q \overline{q}
none 1100-1680
                                95
                                              AAD
                                                                   13D ATLS
                                                                                    W' \rightarrow q \overline{q}
                                               CHATRCHYAN 13A CMS
none 1000-1920
                                95
                                           77 CHATRCHYAN 13AJ CMS
                                                                                    W' \rightarrow WZ
                                           <sup>78</sup> CHATRCHYAN 13AQ CMS
                                                                                    W' \rightarrow e \nu, \mu \nu
>2900
                                95
                                           <sup>79</sup> CHATRCHYAN 13E CMS
                                                                                    W' \rightarrow tb
none 800-1510
                                95
                                           <sup>80</sup> CHATRCHYAN 13∪ CMS
                                                                                    W' \rightarrow WZ
none 700-940
                                95
                                           <sup>81</sup> AAD
                                                                   12AV ATLS
                                                                                    W' \rightarrow tb
none 700-1130
                                95
                                           <sup>82</sup> AAD
                                                                                    W' \rightarrow WZ
none 200-760
                                                                   12BB ATLS
                                95
                                           83 AAD
                                                                                    W' \rightarrow \overline{t}q
                                                                   12CK ATLS
                                           <sup>84</sup> AAD
                                                                   12CR ATLS
                                                                                    W' \rightarrow e \nu, \mu \nu
                                95
>2550
                                           <sup>85</sup> AAD
                                                                                    W' \rightarrow N\ell \rightarrow \ell\ell jj
                                                                   12M ATLS
```

		⁸⁶ AALTONEN	12N CDF	$\mathcal{W'} ightarrow$	$\overline{t}q$
none 200-1143	95	⁸² CHATRCHYAN	112AF CMS	W' o	WZ
		⁸⁷ CHATRCHYAN	12AR CMS	W' o	$\overline{t}q$
		⁸⁸ CHATRCHYAN	12BG CMS	W' o	$N\ell ightarrow \ell\ell jj$
>1120	95	AALTONEN	11c CDF	W' o	$e\nu$
none 180-690	95	⁸⁹ ABAZOV	11H D0	W' o	WZ
none 600-863	95	⁹⁰ ABAZOV	11L D0	W' o	t b
none 285-516	95	⁹¹ AALTONEN	10N CDF	W' o	WZ
none 280-840	95	⁹² AALTONEN	09AC CDF	W' o	q q
>1000	95	ABAZOV	08C D0	W' o	$e\nu$
none 300-800	95	ABAZOV	04C D0	W' o	q q
none 225-536	95	⁹³ ACOSTA	03B CDF	W' o	t b
none 200-480	95	⁹⁴ AFFOLDER	02c CDF	W' o	WZ
> 786	95	⁹⁵ AFFOLDER	01ı CDF	W' o	e $ u$, μu
none 300-420	95	⁹⁶ ABE	97G CDF	W' o	q q
> 720	95	⁹⁷ ABACHI	96c D0	W' o	$e\nu$
> 610	95	⁹⁸ ABACHI	95E D0	W' o	$e\nu$, $ au u$
none 260-600	95	⁹⁹ RIZZO	93 RVUE	W' o	9 9

- ¹ SIRUNYAN 21Y search for resonances decaying to tb in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 2 for limits on $\sigma \cdot B(W' \rightarrow tb)$.
- ² AAD 20AJ search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2900$ GeV for $g_V=1$. See their Fig. 6 for limits on $\sigma \cdot B$.
- ³ AAD 20AT search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>3900$ GeV for $g_V=1$. See their Fig. 13 for limits on $\sigma \cdot B$.
- ⁴ AAD 20T search for W' with SM-like couplings in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 4(c) for limits on the product of the cross section, acceptance, and branching fraction.
- ⁵ SIRUNYAN 20AI limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV.
- ⁶ SIRUNYAN 20Q search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$.
- 7 AABOUD 19B search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying to ℓjj . See their Figs. 7 and 8 for excluded regions in $M_{W_R}-M_N$ plane.
- ⁸ AABOUD 19E search for right-handed W' in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limit on on $\sigma \cdot B$.
- ⁹ AAD 19C search for W' with SM-like couplings in pp collisions at $\sqrt{s}=13$ TeV. Bosonic decays and W-W' interference are neglected. The limits on e and μ separately are 6.0 and 5.1 TeV respectively. See their Fig. 2 for limits on $\sigma \cdot B$.
- 10 AAD 19D search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>3400$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>3800$ GeV and $M_{W'}>3500$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 9 for limits on $\sigma \cdot B$.
- ¹¹ SIRUNYAN 19AY limits shown for W' with SM-like coupling using pp collisions at \sqrt{s} = 13 TeV. W-W' interference and bosonic decays of W' are not included. See their Fig. 5 for limits on $\sigma \cdot B$. Limits in the context of a nonuniversal gauge interaction are shown in Fig. 7. Model independent limits on $\sigma B A \epsilon$ can be seen in Fig. 8.

- 12 SIRUNYAN 19CP present a statistical combinations of searches for W' decaying to pairs of bosons or leptons in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. If we assume $M_{W'}=M_{Z'}$, the limit becomes $M_{W'}>4500$ GeV for $g_V=3$ and $M_{W'}>5000$ GeV for $g_V=1$. See their Figs. 2 and 3 for limits on $\sigma\cdot B$.
- ¹³ SIRUNYAN 19I search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2800$ GeV if we assume $M_{W'}=M_{Z'}$.
- 14 AABOUD 18AF give the limit above for right-handed W' using $p\,p$ collisions at $\sqrt{s}=13$ TeV. These limits also exclude W bosons with left-handed couplings with masses below 2.9 TeV, at the 95% confidence level. $W'\to\ell\nu_R$ is assumed to be forbidden. See their Fig.5 for limits on $\sigma\cdot B$ for both cases of left- and right-handed W'.
- ¹⁵ AABOUD 18AI search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2670$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2930$ GeV and $M_{W'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 5 for limits on $\sigma \cdot B$.
- ¹⁶ AABOUD 18AK search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2800$ GeV for $g_V=1$.
- 17 AABOUD 18AL search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_{V}=3$. The limit becomes $M_{W'}\ > 2900$ GeV for $g_{V}=1.$
- ¹⁸ AABOUD 18BG limit is for W' with SM-like couplings using pp collisions at $\sqrt{s}=13$ TeV. Bosonic decays of W' and W-W' interference are neglected. See Fig. 2 for limits on $\sigma \cdot B$.
- 19 AABOUD 18CH search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}~>$ 2260 GeV for $g_V=1$.
- 20 AABOUD 18F search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>3000$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{W'}>3500$ GeV and $M_{W'}>3100$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.5 for limits on $\sigma\cdot B$.
- ²¹ AABOUD 18K limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV. W-W' interference and bosonic decays of W' are not included. See their Fig. 4 for limit on $\sigma \cdot B$.
- 22 SIRUNYAN 18 limit is for right-handed W' using pp collisions at $\sqrt{s}=$ 13 TeV. $W'\to \ell\nu_R$ decay is assumed to be forbidden. The limit becomes $M_{W'}>$ 3.4 TeV if $M_{\nu_R}\ll M_{W'}$. See their Fig. 5 for exclusion limits on W' models having both left- and right-handed couplings.
- ²³ SIRUNYAN 18AX search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. See their Fig.6 for limits on $\sigma \cdot B$.
- ²⁴ SIRUNYAN 18AZ limit is derived for W' with SM-like coupling using pp collisions at \sqrt{s} = 13 TeV. No interference with SM W process is considered. The bosonic decays are assumed to be negligible. See their Fig.6 for limits on $\sigma \cdot B$.
- 25 SIRUNYAN 18BK search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes M $_{W'}>3100$ GeV for $g_V=1$.

- 26 SIRUNYAN 18B0 limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV.
- ²⁷ SIRUNYAN 18CV search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying to ℓjj . The quoted limit is for $M_N=M_{W_R}/2$. See their Fig. 6 for excluded regions in the $M_{W_R}-M_N$ plane.
- ²⁸ SIRUNYAN 18DJ search for resonances decaying to WZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2270$ GeV for $g_V=1$.
- 29 SIRUNYAN 18ED search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The limit above is for heavy-vector-triplet W' with $g_V=3$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2900$ GeV and $M_{W'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively.
- ³⁰ SIRUNYAN 18P give this limit for a heavy-vector-triplet W' with $g_V=3$. If they assume $M_{Z'}=M_{W'}$, the limit increases to $M_{W'}>3800$ GeV.
- ³¹ AABOUD 17AK search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit above is for a W' boson having axial-vector SM couplings and decaying to quarks with 75% branching fraction.
- ³² AABOUD 17AO search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a W' in the heavy-vector-triplet model with $g_V=3$. See their Fig.4 for limits on $\sigma \cdot B$.
- 33 AABOUD 17B search for resonances decaying to HW ($H\to b\,\overline{b},\,c\,\overline{c};\,W\to \ell\nu$) in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>1750$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2310$ GeV and $M_{W'}>1730$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.3 for limits on $\sigma\cdot B$.
- 34 KHACHATRYAN 17J search for right-handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into τ and hypothetical heavy neutrino N_τ , with N_τ decaying into τjj . The quoted limit is for $M_{N_\tau}=M_{W_R}/2$. The limit becomes $M_{W_R}>2350$ GeV (1630 GeV) for $M_{W_R}/M_{N_\tau}=0.8$ (0.2). See their Fig. 4 for excluded regions in the $M_{W_R}-M_{N_\tau}$ plane.
- ³⁵ KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$ 13 TeV.
- 36 KHACHATRYAN 17Z limit is for W' with SM-like coupling using pp collisions at \sqrt{s} = 13 TeV. The bosonic decays of W' and the interference with SM W process are neglected.
- 37 SIRUNYAN 17A search for resonances decaying to WZ with $WZ \to \ell \nu q \overline{q}, \, q \overline{q} q \overline{q}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2000$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{W'}>2400$ GeV and $M_{W'}>2300$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.6 for limits on $\sigma \cdot B$.
- 38 SIRUNYAN 17AK search for resonances decaying to WZ or HW in pp collisions at $\sqrt{s}=8$ and 13 TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. The limit becomes $M_{W'}>2300$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{W'}>2400$ GeV for both $g_V=3$ and $g_V=1$. See their Fig.1 and 2 for limits on $\sigma\cdot B$.
- ³⁹ SIRUNYAN 17H search for right-handed W' in pp collisions at $\sqrt{s}=13$ TeV. W' is assumed to decay into τ and a heavy neutrino N, with N decaying to $\tau q \overline{q}$. The limit above assumes $M_N = M_{W'}/2$.
- 40 SIRUNYAN 17I limit is for a right-handed W' using $p\,p$ collisions at $\sqrt{s}=13$ TeV. The limit becomes $M_{W'}~>$ 2400 GeV for $M_{\nu_R}~\ll~M_{W'}$

- ⁴¹ SIRUNYAN 17R search for resonances decaying to HW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet W' with $g_V=3$. Mass regions $M_{W'}<2370$ GeV and $2870 < M_{W'}<2970$ GeV are excluded for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the excluded mass regions are $1000 < M_{W'}<2500$ GeV and $2760 < M_{W'}<3300$ GeV for $g_V=3$; $1000 < M_{W'}<2430$ GeV and $2810 < M_{W'}<3130$ GeV for $g_V=1$. See their Fig.5 for limits on $\sigma \cdot B$.
- ⁴² AABOUD 16AE search for resonances decaying to VV (V=W or Z) in pp collisions at $\sqrt{s}=13$ TeV. Results from $\nu\nu qq$, $\nu\ell qq$, $\ell\ell qq$ and qqqq final states are combined. The quoted limit is for a heavy-vector-triplet W' with $g_V=3$ and $M_{W'}=M_{Z'}$.
- 43 AABOUD 16V limit is for W' with SM-like coupling using pp collisions at $\sqrt{s}=13$ TeV. The bosonic decays of W' and the interference with SM W process are neglected.
- ⁴⁴ AAD 16R search for $W' \to WZ$ in pp collisions at $\sqrt{s} = 8$ TeV. $\ell\nu\ell'\ell'$, $\ell\ell q\overline{q}$, $\ell\nu q\overline{q}$, and all hadronic channels are combined. The quoted limit assumes $g_{W'WZ}/g_{WWZ}$ = $(M_W/M_{W'})^2$.
- ⁴⁵ AAD 16S search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a W' having SM-like couplings to quarks.
- ⁴⁶ KHACHATRYAN 16A0 limit is for a SM-like right-handed W' using pp collisions at \sqrt{s} = 8 TeV. The quoted limit combines $t\to qqb$ and $t\to \ell\nu b$ events.
- ⁴⁷ KHACHATRYAN 16AP search for a resonance decaying to HW in pp collisions at \sqrt{s} = 8 TeV. Both H and W are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet W' with $g_V = 3$.
- ⁴⁸ KHACHATRYAN 16BD search for resonance decaying to HW in pp collisions at $\sqrt{s}=8$ TeV. The quoted limit is for heavy-vector-triplet (HVT) W' with $g_V=3$. The HVT model $m_{W'}=m_{Z'}>1.8$ TeV is also obtained by combining $W'/Z'\to WH/ZH\to\ell\nu\,bb,\,q\,q\,\tau\,\tau,\,q\,q\,b\,b$, and $q\,q\,q\,q\,q$ channels.
- 49 KHACHATRYAN 16κ search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.
- 50 KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at \sqrt{s} = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.
- 51 KHACHATRYAN 160 limit is for W' having universal couplings. Interferences with the SM amplitudes are assumed to be absent.
- ⁵² AAD 15AU search for W' decaying into the WZ final state with $W \to q \overline{q}'$, $Z \to \ell^+ \ell^-$ using $p \, p$ collisions at $\sqrt{s} = 8$ TeV. The quoted limit assumes $g_{W'} \, W \, Z / g_W \, W \, Z = (M_W/M_{W'})^2$.
- ⁵³ AAD 15AV limit is for a SM like right-handed W' using pp collisions at $\sqrt{s}=8$ TeV. $W'\to\ell\nu$ decay is assumed to be forbidden.
- ⁵⁴ AAD 15AZ search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to q \overline{q}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ}=(M_W/M_{W'})^2$.
- ⁵⁵ AAD 15CP search for W' decaying into the WZ final state with $W \to q\overline{q}$, $Z \to q\overline{q}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ}=(M_W/M_{W'})^2$.
- ⁵⁶ AAD 15R limit is for a SM like right-handed W' using pp collisions at $\sqrt{s}=8$ TeV. $W'\to\ell\nu$ decay is assumed to be forbidden.
- ⁵⁷ AAD 15V search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV.
- ⁵⁸ KHACHATRYAN 15C search for W' decaying via WZ to fully leptonic final states using pp collisions at \sqrt{s} =8 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ}=M_W$ $M_Z/M_{W'}^2$.

- ⁵⁹ KHACHATRYAN 15T limit is for W' with SM-like coupling which interferes the SM W boson constructively using pp collisions at $\sqrt{s}=8$ TeV. For W' without interference, the limit becomes > 3280 GeV.
- 60 KHACHATRYAN 140 search for right-handed W_R in pp collisions at $\sqrt{s}=8$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . The quoted limit is for $M_{\nu eR}=M_{\nu \mu R}=M_{W_R}/2$. See their Fig. 3 and Fig. 5 for excluded regions in the $M_{W_R}-M_{\nu}$ plane.
- ⁶¹ AAD 20AD search for a narrow resonance decaying to a pair of large-radius-jets J_1 and J_2 employing a machine-learning procedure. See their Fig. 3 for limits on $\sigma \cdot B$ depending on assumptions about invariant masses for J_1 , J_2 , and $J_1 J_2$.
- 62 AAD 20W search for W' decaying to WZ' in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5(b) for limits on $\sigma \cdot B$ as a function of $m_{Z'}$. The $W' \to WZ'$ branching fraction was chosen to be 0.5 and the mass difference between the W' and Z' was set to 250 GeV.
- ⁶³AABOUD 19BB search for right handed W_R in pp collisions at $\sqrt{s}=13$ TeV. W_R is assumed to decay into ℓ and a boosted hypothetical heavy neutrino N, with N decaying to ℓ and a large radius jet $j=q\overline{q}$. See their Fig. 7 for excluded regions in $M_{W_R}-M_N$ plane.
- ⁶⁴ SIRUNYAN 19V search for a new resonance decaying to a top quark and a heavy vector-like bottom partner B decaying to Hb (or a bottom quark and a heavy vector-like top partner T decaying to Ht) in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limits on $\sigma \cdot B$.
- ⁶⁵ AABOUD 18AA search for a narrow charged vector boson decaying to $W\gamma$. See their Fig. 9 for the exclusion limit in $M_{W'}-\sigma B$ plane.
- ⁶⁶ AABOUD 18AD search for resonances decaying to HX ($H \rightarrow b\overline{b}, X \rightarrow q\overline{q}'$) in pp collisions at $\sqrt{s}=13$ TeV. See their Figs. 3–5 for limits on $\sigma \cdot B$.
- ⁶⁷ AABOUD 18CJ search for heavy-vector-triplet W' in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for model with $g_V=3$ assuming $M_{W'}=M_{Z'}$. The limit becomes $M_{W'}>5500$ GeV for model with $g_V=1$.
- ⁶⁸ KHACHATRYAN 170 search for resonances decaying to HW ($H \to b \, \overline{b}; W \to \ell \nu$) in pp collisions at $\sqrt{s}=13$ TeV. The limit on the heavy-vector-triplet model is $M_{Z'}=M_{W'}>2$ TeV for $g_V=3$, in which constraints from the $Z'\to HZ$ ($H\to b \, \overline{b}; Z\to \ell^+\ell^-, \nu\overline{\nu}$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma\cdot B$.
- ⁶⁹ AAD 15BB search for W' decaying into WH with $W \to \ell \nu$, $H \to b \overline{b}$. See their Fig. 4 for the exclusion limits in the heavy vector triplet benchmark model parameter space.
- ⁷⁰ AALTONEN 15C limit is for a SM-like right-handed W' assuming $W' \to \ell \nu$ decays are forbidden, using $p \overline{p}$ collisions at \sqrt{s} =1.96 TeV. See their Fig. 3 for limit on $g_{W'}/g_W$.
- ⁷¹ KHACHATRYAN 15V search new resonance decaying to dijets in pp collisions at $\sqrt{s}=$ 8 TeV.
- ⁷² AAD 14AT search for a narrow charged vector boson decaying to $W\gamma$. See their Fig. 3a for the exclusion limit in $m_{W'}-\sigma B$ plane.
- ⁷³ AAD 14S search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to \ell \ell$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ}=(M_W/M_{W'})^2$.
- ⁷⁴ KHACHATRYAN 14 search for W' decaying into WZ final state with $W \to q\overline{q}$, $Z \to q\overline{q}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes $g_{W'}WZ/g_WWZ = (M_W/M_{W'})^2$.
- 75 KHACHATRYAN 14A search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to q \overline{q}$, or $W \to q \overline{q}$, $Z \to \ell \ell$. pp collisions data at $\sqrt{s}{=}8$ TeV are used for the search. See their Fig. 13 for the exclusion limit on the number of events in the mass—width plane.

- ⁷⁶ AAD 13AO search for W' decaying into the WZ final state with $W \to \ell \nu$, $Z \to 2j$ using pp collisions at $\sqrt{s}=7$ TeV. The quoted limit assumes $g_{W'}WZ/g_WWZ = (M_W/M_{W'})^2$.
- ⁷⁷ CHATRCHYAN 13AJ search for resonances decaying to WZ pair, using the hadronic decay modes of W and Z, in pp collisions at \sqrt{s} =7 TeV. See their Fig. 7 for the limit __ on the cross section.
- ⁷⁸ CHATRCHYAN 13AQ limit is for W' with SM-like coupling which interferes with the SM W boson using pp collisions at \sqrt{s} =7 TeV.
- 79 CHATRCHYAN 13E limit is for W' with SM-like coupling which intereferes with the SM W boson using pp collisions at \sqrt{s} =7 TeV. For W' with right-handed coupling, the bound becomes >1850 GeV (>1910 GeV) if W' decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings are present, the limit becomes >1640 GeV.
- ⁸⁰ CHATRCHYAN 13U search for W' decaying to the WZ final state, with W decaying into jets, in pp collisions at \sqrt{s} =7 TeV. The quoted limit assumes $g_{W'}WZ/gWWZ = (M_W/M_{W'})^2$.
- ⁸¹ The AAD 12AV quoted limit is for a SM-like right-handed W' using pp collisions at \sqrt{s} =7 TeV. $W' \rightarrow \ell \nu$ decay is assumed to be forbidden.
- ⁸²AAD 12BB use pp collisions data at \sqrt{s} =7 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ} = (M_W/M_{W'})^2$.
- ⁸³ AAD 12CK search for $pp \to tW'$, $W' \to \overline{t}q$ events in pp collisions. See their Fig. 5 for the limit on $\sigma \cdot B$.
- ⁸⁴ AAD 12CR use pp collisions at \sqrt{s} =7 TeV.
- ⁸⁵ AAD 12M search for right-handed W_R in pp collisions at $\sqrt{s}=7$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . See their Fig. 4 for the limit in the $m_N-m_{W'}$ plane.
- ⁸⁶ AALTONEN 12N search for $p\overline{p} \to tW'$, $W' \to \overline{t}d$ events in $p\overline{p}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot B$.
- ⁸⁷ CHATRCHYAN 12AR search for $pp \to tW'$, $W' \to \overline{t}d$ events in pp collisions. See their Fig. 2 for the limit on $\sigma \cdot B$.
- 88 CHATRCHYAN 12BG search for right-handed W_R in pp collisions $\sqrt{s}=7$ TeV. W_R is assumed to decay into ℓ and hypothetical heavy neutrino N, with N decaying into ℓjj . See their Fig. 3 for the limit in the $m_N-m_{W'}$ plane.
- ⁸⁹ ABAZOV 11H use data from $p\overline{p}$ collisions at \sqrt{s} =1.96 TeV. The quoted limit is obtained assuming W'WZ coupling strength is the same as the ordinary WWZ coupling strength in the Standard Model.
- ABAZOV 11L limit is for W' with SM-like coupling which interferes with the SM W boson, using $p\overline{p}$ collisions at \sqrt{s} =1.96 TeV. For W' with right-handed coupling, the bound becomes >885 GeV (>890 GeV) if W' decays to both leptons and quarks (only to quarks). If both left- and right-handed couplings present, the limit becomes >916 GeV.
- 91 AALTONEN 10N use $p\overline{p}$ collision data at \sqrt{s} =1.96 TeV. The quoted limit assumes $g_{W'WZ}/g_{WWZ} = (M_W/M_{W'})^2$. See their Fig. 4 for limits in mass-coupling plane.
- 92 AALTONEN 09AC search for new particle decaying to dijets using $p\overline{p}$ collisions at $\sqrt{s}{=}1.96$ TeV.
- ⁹³ The ACOSTA 03B quoted limit is for $M_{W'}\gg M_{\nu_R}$, using $p\overline{p}$ collisions at $\sqrt{s}{=}1.8$ TeV. For $M_{W'}< M_{\nu_R}$, $M_{W'}$ between 225 and 566 GeV is excluded.
- ⁹⁴ The quoted limit is obtained assuming W'WZ coupling strength is the same as the ordinary WWZ coupling strength in the Standard Model, using $p\overline{p}$ collisions at \sqrt{s} =1.8 TeV. See their Fig. 2 for the limits on the production cross sections as a function of the W' width.

W_R (Right-Handed W Boson) MASS LIMITS

Assuming a light right-handed neutrino, except for BEALL 82, LANGACKER 89B, and COLANGELO 91. $g_R = g_L$ assumed. [Limits in the section MASS LIMITS for W' below are also valid for W_R if $m_{\nu_R} \ll m_{W_R}$.] Some limits assume manifest left-right symmetry, i.e., the equality of left- and right Cabibbo-Kobayashi-Maskawa matrices. For a comprehensive review, see LANGACKER 89B. Limits on the W_L - W_R mixing angle ζ are found in the next section. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
> 592	90	$^{ m 1}$ BUENO	11	TWST	μ decay
> 715	90	² CZAKON	99	RVUE	Electroweak
ullet $ullet$ We do not use	the follow	wing data for avera	ges, f	its, limit	s, etc. • • •
> 235	90	³ PRIEELS	14	PIE3	μ decay
> 245	90	⁴ WAUTERS	10	CNTR	60 Co eta decay
>2500		⁵ ZHANG	80	THEO	${}^{m}K_{I}^{0}-{}^{m}K_{S}^{0}$
> 180	90	⁶ MELCONIAN	07	CNTR	$37 \frac{1}{K} \beta + \frac{3}{decay}$
> 290.7	90	⁷ SCHUMANN	07	CNTR	Polarized neutron decay
[> 3300]	95	⁸ CYBURT	05	COSM	Nucleosynthesis; light $ u_R$
> 310	90	⁹ THOMAS	01	CNTR	β^+ decay
> 137	95	¹⁰ ACKERSTAFF	99 D	OPAL	au decay
>1400	68	¹¹ BARENBOIM	98	RVUE	Electroweak, Z - Z' mixing
> 549	68	¹² BARENBOIM	97	RVUE	μ decay
> 220	95	¹³ STAHL	97	RVUE	au decay
> 220	90	¹⁴ ALLET	96	CNTR	β^+ decay
> 281	90	¹⁵ KUZNETSOV	95	CNTR	Polarized neutron decay
> 282	90	¹⁶ KUZNETSOV	94 B	CNTR	Polarized neutron decay
> 439	90	¹⁷ BHATTACH	93	RVUE	Z-Z' mixing
> 250	90	¹⁸ SEVERIJNS	93	CNTR	β^+ decay
		¹⁹ IMAZATO	92	CNTR	K^+ decay
> 475	90	²⁰ POLAK	92 B	RVUE	μ decay
> 240	90	²¹ AQUINO	91	RVUE	Neutron decay
> 496	90	²¹ AQUINO	91	RVUE	Neutron and muon decay
> 700		²² COLANGELO	91	THEO	${}^{m}K_{I}^{0} - {}^{m}K_{S}^{0}$
> 477	90	²³ POLAK	91	RVUE	μ decay
[none 540-23000]		²⁴ BARBIERI	89 B	ASTR	SN 1987A; light ν_R
> 300	90	²⁵ LANGACKER	89 B	RVUE	General
> 160	90	²⁶ BALKE	88		$\mu ightarrow \mathrm{e} u \overline{ u}$
> 406	90	²⁷ Jodidio	86	ELEC	Any ζ
> 482	90	²⁷ JODIDIO	86	ELEC	$\zeta = 0$

⁹⁵ AFFOLDER 011 combine a new bound on $W' \to e\nu$ of 754 GeV, using $p\overline{p}$ collisions at \sqrt{s} =1.8 TeV, with the bound of ABE 00 on $W' \to \mu\nu$ to obtain quoted bound.

⁹⁶ ABE 97G search for new particle decaying to dijets using $p\overline{p}$ collisions at \sqrt{s} =1.8 TeV.

 $^{^{97}}$ For bounds on W_R with nonzero right-handed mass, see Fig. 5 from ABACHI 96C.

⁹⁸ ABACHI 95E assume that the decay $W' \to WZ$ is suppressed and that the neutrino from W' decay is stable and has a mass significantly less $m_{W'}$.

 $^{^{99}}$ RIZZO 93 analyses CDF limit on possible two-jet resonances. The limit is sensitive to the inclusion of the assumed K factor.

> 800			86	RVUE	$SU(2)_I \times SU(2)_R \times U(1)$
> 400				ELEC	
> 475	95	²⁸ STOKER	85	ELEC	ζ < 0.041
		²⁹ BERGSMA	83	CHRM	$\nu_{\mu} e \rightarrow \mu \nu_{e}$
> 380	90	³⁰ CARR			μ^+ decay
>1600		³¹ BEALL	82	THEO	$m_{K_{i}^{0}} - m_{K_{c}^{0}}$

¹The quoted limit is for manifest left-right symmetric model.

²CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

³PRIEELS 14 limit is from $\mu^+ \to e^+ \nu \overline{\nu}$ decay parameter ξ'' , which is determined by the positron polarization measurement.

 $^{^4}$ WAUTERS 10 limit is from a measurement of the asymmetry parameter of polarized 60 Co β decays. The listed limit assumes no mixing.

⁵ ZHANG 08 limit uses a lattice QCD calculation of the relevant hadronic matrix elements, while BEALL 82 limit used the vacuum saturation approximation.

⁶ MELCONIAN 07 measure the neutrino angular asymmetry in β^+ -decays of polarized ³⁷K, stored in a magneto-optical trap. Result is consistent with SM prediction and does not constrain the $W_L - W_R$ mixing angle appreciably.

⁷ SCHUMANN 07 limit is from measurements of the asymmetry $\langle \vec{p}_{\nu} \cdot \sigma_{n} \rangle$ in the β decay of polarized neutrons. Zero mixing is assumed.

⁸ CYBURT 05 limit follows by requiring that three light ν_R 's decouple when $T_{dec} >$ 140 MeV. For different T_{dec} , the bound becomes $M_{W_R} >$ 3.3 TeV $(T_{dec} /$ 140 MeV)^{3/4}.

⁹ THOMAS 01 limit is from measurement of β^+ polarization in decay of polarized ¹²N. The listed limit assumes no mixing.

 $^{^{10}}$ ACKERSTAFF 99D limit is from $ilde{ au}$ decay parameters. Limit increase to 145 GeV for zero mixing.

¹¹ BARENBOIM 98 assumes minimal left-right model with Higgs of SU(2) $_R$ in SU(2) $_L$ doublet. For Higgs in SU(2) $_L$ triplet, $m_{W_R} > 1100$ GeV. Bound calculated from effect of corresponding Z_{LR} on electroweak data through $Z - Z_{LR}$ mixing.

¹² The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from K_I - K_S mass difference.

 $^{^{13}}$ STAHL 97 limit is from fit to au-decay parameters.

 $^{^{14}}$ ALLET 96 measured polarization-asymmetry correlation in 12 N β^+ decay. The listed limit assumes zero *L-R* mixing.

 $^{^{15}}$ KUZNETSOV 95 limit is from measurements of the asymmetry $\left\langle \vec{p}_{\nu}\cdot\sigma_{n}\right\rangle$ in the β decay of polarized neutrons. Zero mixing assumed. See also KUZNETSOV 94B.

¹⁶ KUZNETSOV 94B limit is from measurements of the asymmetry $\langle \vec{p}_{\nu} \cdot \sigma_{n} \rangle$ in the β decay of polarized neutrons. Zero mixing assumed.

 $^{^{17}}$ BHATTACHARYYA 93 uses $Z\text{-}Z^{\bar{I}}$ mixing limit from LEP '90 data, assuming a specific Higgs sector of $\mathrm{SU}(2)_L\times\mathrm{SU}(2)_R\times\mathrm{U}(1)$ gauge model. The limit is for $m_t{=}200$ GeV and slightly improves for smaller m_t .

 $^{^{18}}$ SEVERIJNS 93 measured polarization-asymmetry correlation in 107 In β^+ decay. The listed limit assumes zero L-R mixing. Value quoted here is from SEVERIJNS 94 erratum.

¹⁹ IMAZATO 92 measure positron asymmetry in $K^+ \to \mu^+ \nu_\mu$ decay and obtain $\xi P_\mu > 0.990$ (90% CL). If W_R couples to $u \overline{s}$ with full weak strength ($V_{us}^R = 1$), the result corresponds to $m_{W_R} > 653$ GeV. See their Fig. 4 for m_{W_R} limits for general $|V_{us}^R|^2 = 1 - |V_{ud}^R|^2$.

²⁰ POLAK 92B limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming ζ =0. Supersedes POLAK 91.

²¹ AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right symmetry assumed. Stronger of the two limits also includes muon decay results.

- ²² COLANGELO 91 limit uses hadronic matrix elements evaluated by QCD sum rule and is less restrictive than BEALL 82 limit which uses vacuum saturation approximation. Manifest left-right symmetry assumed.
- ²³ POLAK 91 limit is from fit to muon decay parameters and is essentially determined by JODIDIO 86 data assuming ζ =0. Superseded by POLAK 92B.
- $^{24}\,\mathrm{BARBIERI}$ 89B limit holds for $m_{\nu_R} \leq 10$ MeV.
- ²⁵ LANGACKER 89B limit is for any ν_R mass (either Dirac or Majorana) and for a general class of right-handed quark mixing matrices.
- ²⁶ BALKE 88 limit is for $m_{\nu_{eR}} = 0$ and $m_{\nu_{\mu R}} \leq 50$ MeV. Limits come from precise measurements of the muon decay asymmetry as a function of the positron energy.
- ²⁷ JODIDIO 86 is the same TRIUMF experiment as STOKER 85 (and CARR 83); however, it uses a different technique. The results given here are combined results of the two techniques. The technique here involves precise measurement of the end-point e^+ spectrum in the decay of the highly polarized μ^+ .
- 28 STOKER 85 is same TRIUMF experiment as CARR 83. Here they measure the decay e^+ spectrum asymmetry above 46 MeV/c using a muon-spin-rotation technique. Assumed a light right-handed neutrino. Quoted limits are from combining with CARR 83.
- 29 BERGSMA 83 set limit $m_{W_2}/m_{W_1} > 1.9$ at CL = 90%.
- 30 CARR 83 is TRIUMF experiment with a highly polarized μ^+ beam. Looked for deviation from V-A at the high momentum end of the decay e^+ energy spectrum. Limit from previous world-average muon polarization parameter is $m_{W_R} > 240$ GeV. Assumes a light right-handed neutrino.
- ³¹ BEALL 82 limit is obtained assuming that W_R contribution to $K_L^0 K_S^0$ mass difference is smaller than the standard one, neglecting the top quark contributions. Manifest left-right symmetry assumed.

Limit on W_L - W_R Mixing Angle ζ

Lighter mass eigenstate $W_1=W_L\cos\zeta-W_R\sin\zeta$. Light ν_R assumed unless noted. Values in brackets are from cosmological and astrophysical considerations.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	, fits,	limits, e	etc. • • •
-0.020 to 0.017	90	BUENO	11	TWST	$\mu ightarrow \mathrm{e} \nu \overline{ u}$
< 0.022	90	MACDONALD	80	TWST	$\mu ightarrow \mathrm{e} u \overline{ u}$
< 0.12	95	¹ ACKERSTAFF	99 D	OPAL	au decay
< 0.013	90	² CZAKON	99	RVUE	Electroweak
< 0.0333		³ BARENBOIM	97	RVUE	μ decay
< 0.04	90	⁴ MISHRA	92	CCFR	u N scattering
-0.0006 to 0.0028	90	⁵ AQUINO	91	RVUE	
[none 0.00001-0.02]		⁶ BARBIERI	89 B	ASTR	SN 1987A
< 0.040	90	⁷ JODIDIO	86	ELEC	μ decay
-0.056 to 0.040	90	⁷ JODIDIO	86	ELEC	μ decay

 $^{^1}$ ACKERSTAFF 99D limit is from au decay parameters.

²CZAKON 99 perform a simultaneous fit to charged and neutral sectors.

³ The quoted limit is from μ decay parameters. BARENBOIM 97 also evaluate limit from K_L - K_S mass difference.

 $^{^4}$ MISHRA 92 limit is from the absence of extra large-x, large-y $\overline{\nu}_{\mu}$ N $\rightarrow \ \overline{\nu}_{\mu}$ X events at Tevatron, assuming left-handed ν and right-handed $\overline{\nu}$ in the neutrino beam. The result gives $\zeta^2(1-2m_{W_1}^2/m_{W_2}^2)<$ 0.0015. The limit is independent of ν_R mass.

⁵ AQUINO 91 limits obtained from neutron lifetime and asymmetries together with unitarity of the CKM matrix. Manifest left-right asymmetry is assumed.

See the related review(s):

Z'-Boson Searches

MASS LIMITS for Z' (Heavy Neutral Vector Boson Other Than Z)

Limits for Z'_{SM}

 Z'_{SM} is assumed to have couplings with quarks and leptons which are identical to those of Z, and decays only to known fermions. The most recent preliminary results can be found in the "Z'-boson searches" review above.

WALUE (GeV) CL% DOCUMENT ID TECH COMMENT

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>5150 (CL = 95)	5%) OUF	RLIMIT		
>5150	95		CMS	$pp; Z'_{SM} \rightarrow e^+e^-, \mu^+\mu^-$
none 1133-2700	95		ATLS	pp, $Z_{SM}^{\widetilde{\prime}} ightarrow b\overline{b}$
none 1800–2900, 3100–3300	95	³ SIRUNYAN 20AI	CMS	pp; $Z_{SM}^{7} ightarrow q \overline{q}$
none 250-5100	95		ATLS	$pp; Z'_{SM} \rightarrow e^{+}_{-}e^{-}, \mu^{+}\mu^{-}$
none 600-2000	95		3 ATLS	$pp; Z_{SM}' \rightarrow b\overline{b}$
>2420	95		ATLS	pp; $Z_{SM}^{\gamma} \rightarrow \tau^+ \tau^-$
none 200-4500	95		3 CMS	$pp; Z_{SM}^{\gamma} \rightarrow e^+e^-, \mu^+\mu^-$
none 600-2700	95		CMS	pp; $\mathit{Z}'_{SM} o q \overline{q}$
>4500	95	⁹ AABOUD 17A1	ATLS	pp; $Z_{SM}^{\gamma} \rightarrow e^+e^-, \mu^+\mu^-$
>2100	95	¹⁰ KHACHATRY17H	CMS	pp; $Z_{SM}^{\prime} ightarrow \tau^+ \tau^-$
>3370	95	¹¹ KHACHATRY17T		pp; $Z_{SM}^{\gamma m} \rightarrow e^+e^-, \mu^+\mu^-$
none 600–2100, 2300–2600	95	¹² KHACHATRY17W	CMS	$pp; Z_{SM}^{\gamma M} \rightarrow q\overline{q}$
>3360	95	13 AABOUD 160	ATLS	pp; $Z'_{SM} ightarrow e^+e^-$, $\mu^+\mu^-$
>2900	95	¹⁴ KHACHATRY15AE	CMS	pp; $Z_{SM}^{SM} \rightarrow e^+e^-, \mu^+\mu^-$
none 1200-1700	95	¹⁵ KHACHATRY15V	CMS	pp; $Z_{SM}^{OM} \rightarrow q\overline{q}$
>2900	95	16 AAD 14V	ATLS	pp; $Z_{SM}^{SM} \rightarrow e^+e^-, \mu^+\mu^-$
• • • We do not	use the	following data for average	ges, fits,	
		¹⁷ BOBOVNIKOV 18	RVUE	pp, $Z'_{SM} ightarrow W^+W^-$
>1900	95	¹⁸ AABOUD 16AA	A ATLS	pp; $Z_{SM}^{SM} \rightarrow \tau^+ \tau^-$
>2020	95	¹⁹ AAD 15AN	мATLS	pp; $Z_{SM}^{SM} \rightarrow \tau^+ \tau^-$
>1400	95	²⁰ AAD 13S	ATLS	$pp; Z_{SM}^{SM} \rightarrow \tau^+ \tau^-$
>1470	95	²¹ CHATRCHYAN 13A	CMS	$pp; Z_{SM}^{iNI} \rightarrow q\overline{q}$
>2590	95	²² CHATRCHYAN 13AF	CMS	$pp; Z_{SM}^{'SM} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>2220	95	00	ATLS	$pp; Z_{SM}^{'NM} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>1400	95	²⁴ CHATRCHYAN 120	CMS	pp; $Z_{SM}^{'SM} \rightarrow \tau^+ \tau^-$
>1071	95	²⁵ AALTONEN 111	CDF	$p\overline{p}; Z_{SM}^{\prime NM} \rightarrow \mu^{+}\mu^{-}$
>1023	95	²⁶ ABAZOV 11A	D0	$p\overline{p}, Z'_{SM} \rightarrow e^+e^-$
none 247-544	95	²⁷ AALTONEN 10N	CDF	$Z' \rightarrow WW$
none 320-740	95		CDF	$Z' \rightarrow q \overline{q}$
https://pdg.lbl	l.gov	Page 13		Created: 8/11/2022 09:39

 $^{^6\,\}mathrm{BARBIERI}$ 89B limit holds for $m_{\nu_R} \leq 10$ MeV.

 $^{^7}$ First JODIDIO 86 result assumes $m_{W_R} {=} \infty$, second is for unconstrained m_{W_R} .

> 963	95	²⁶ AALTONEN	09T	CDF	p \overline{p} , $Z'_{SM} ightarrow \mathrm{e^+ e^-}$
>1403	95	²⁹ ERLER	09	RVUE	Electroweak
>1305	95	³⁰ ABDALLAH	06 C	DLPH	e^+e^-
> 399	95	³¹ ACOSTA	05 R	CDF	$\overline{p}p: Z_{SM}' \rightarrow \tau^+ \tau^-$
none 400-640	95	ABAZOV	04C		$p\overline{p}: Z_{SM}^{\widetilde{p}} \rightarrow q\overline{q}$
>1018	95	³² ABBIENDI	04G	OPAL	2111
> 670	95	³³ ABAZOV	01 B	D0	$p\overline{p}, Z'_{SM} ightarrow e^+e^-$
>1500	95	³⁴ CHEUNG	01 B	RVUE	~ 1/1
> 710	95	³⁵ ABREU	00 S	DLPH	e^+e^-
> 898	95	³⁶ BARATE	001	ALEP	e^+e^-
> 809	95	³⁷ ERLER	99	RVUE	Electroweak
> 690	95	³⁸ ABE	97s	CDF	$p\overline{p}$; $Z'_{SM} \rightarrow e^+e^-$, $\mu^+\mu^-$
> 398	95	³⁹ VILAIN	94 B		$ u_{\mu}{ m e} ightarrow \overline{ u}_{\mu}{ m e} \ { m and} \ \overline{ u}_{\mu}{ m e} ightarrow \ \overline{ u}_{\mu}{ m e}$
> 237	90	⁴⁰ ALITTI	93	UA2	$p\overline{p}; Z'_{SM} \rightarrow q\overline{q}$
none 260-600	95	⁴¹ RIZZO	93		$p\overline{p}; Z_{SM}^{\widetilde{r}M} \rightarrow q\overline{q}$
> 426	90	⁴² ABE	90F	VNS	e^+e^-

- ¹ SIRUNYAN 21N search for resonance decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at \sqrt{s}
- 2 AAD 20T search for resonances decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 7(b) for limits on the product of the cross section, acceptance, b-tagging efficiency, and branching fraction.
- 3 SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$
- ⁴ AAD 19L search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- ⁵ AABOUD 18AB search for resonances decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV.
- ⁶ AABOUD 18G search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=13$
- ⁷SIRUNYAN 18BB search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig.5 for limits on the Z' coupling strengths with light quarks.
- 8 SIRUNYAN 18BO search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.
- 9 AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$
- 10 KHACHATRYAN 17H search for resonances decaying to $au^+ au^-$ in pp collisions at \sqrt{s}
- 11 KHACHATRYAN 17T search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s} = 8$, 13 TeV.
- 12 KHACHATRYAN 17W search for resonances decaying to dijets in $ho\,
 ho$ collisions at $\sqrt{s}=$
- 13 AABOUD 160 search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- ¹⁴ KHACHATRYAN 15AE search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s} = 8$ TeV.
- 15 KHACHATRYAN 15V search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$
- ¹⁶ AAD ¹⁴V search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$
- ¹⁷BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the Z-Z' mixing parameter ξ . See their Fig. 11 for limits in $M_{Z'}-\xi$ plane.
- ¹⁸ AABOUD 16AA search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=13$ $^{\mbox{TeV}.}$ 19 AAD 15AM search for resonances decaying to $\tau^+\,\tau^-$ in $p\,p$ collisions at $\sqrt{s}=$ 8 TeV.

- 20 AAD 13S search for resonances decaying to $au^+ au^-$ in pp collisions at $\sqrt{s}=7$ TeV.

- ²¹ CHATRCHYAN 13A use pp collisions at \sqrt{s} =7 TeV.
- ²² CHATRCHYAN 13AF search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV and 8 TeV.
- ²³ AAD 12CC search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV.
- ²⁴ CHATRCHYAN 120 search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=7$ TeV.
- ²⁵ AALTONEN 111 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- ²⁶ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- ²⁷ The quoted limit assumes $g_{WWZ'}/g_{WWZ} = (M_W/M_{Z'})^2$. See their Fig. 4 for limits in mass-coupling plane.
- ²⁸ AALTONEN 09AC search for new particle decaying to dijets.
- 29 ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0026 < \theta < 0.0006$.
- 30 ABDALLAH 06C use data $\sqrt{s}=130$ –207 GeV.
- ³¹ ACOSTA 05R search for resonances decaying to tau lepton pairs in $\overline{p}p$ collisions at \sqrt{s} = 1.96 TeV.
- =1.96 TeV. 32 ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00422<\theta<0.00091.$ $\sqrt{s}=91$ to 207 GeV.
- to 207 GeV. 33 ABAZOV 01B search for resonances in $p\overline{p} \rightarrow e^+e^-$ at \sqrt{s} =1.8 TeV. They find $\sigma \cdot B(Z' \rightarrow e\,e) < 0.06$ pb for $M_{Z'} > 500$ GeV.
- 34 CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.
- ³⁵ ABREU 00S uses LEP data at \sqrt{s} =90 to 189 GeV.
- ³⁶ BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- 37 ERLER 99 give 90%CL limit on the Z-Z' mixing $-0.0041 < \theta < 0.0003$. $\rho_0{=}1$ is assumed.
- ³⁸ ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.
- 39 VILAIN 94B assume $m_t=150$ GeV.
- ⁴⁰ ALITTI 93 search for resonances in the two-jet invariant mass. The limit assumes B($Z' \rightarrow q\overline{q}$)=0.7. See their Fig. 5 for limits in the $m_{Z'}$ -B($q\overline{q}$) plane.
- 41 RIZZO 93 analyses CDF limit on possible two-jet resonances.
- ⁴² ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. They fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.

Limits for Z_{LR}

 Z_{LR} is the extra neutral boson in left-right symmetric models. $g_L = g_R$ is assumed unless noted. Values in parentheses assume stronger constraint on the Higgs sector, usually motivated by specific left-right symmetric models (see the Note on the W'). Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino. Direct search bounds assume decays to Standard Model fermions only, unless noted.

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>1162	95	¹ DEL-AGUILA	10	RVUE	Electroweak
> 630	95	² ABE	97 S	CDF	p \overline{p} ; $Z_{IR}^{'} ightarrow e^{+}e^{-}$, $\mu^{+}\mu^{-}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
<sup>3</sup> BOBOVNIKOV 18 RVUE pp, Z'_{LR} \rightarrow W^+W^-
                  95
                            <sup>4</sup> ERLER
                                                    RVUE Electroweak
> 998
> 600
                  95
                              SCHAEL
                                              07A ALEP
                            <sup>5</sup> ABDALLAH
                  95
                                              06C DLPH e^+e^-
> 455
                            <sup>6</sup> ABBIENDI
                                              04G OPAL e^+e^-
                  95
> 518
                            <sup>7</sup> CHEUNG
> 860
                  95
                                              01B RVUE Electroweak
                            <sup>8</sup> ABREU
                  95
                                              00S DLPH e^+e^-
> 380
                            <sup>9</sup> BARATE
> 436
                  95
                                              00ı ALEP
                                                             Repl. by SCHAEL 07A
                           <sup>10</sup> CHAY
> 550
                                                    RVUE Electroweak
                           <sup>11</sup> ERLER
                                              00 RVUE Cs
                           <sup>12</sup> CASALBUONI 99
                                                    RVUE Cs
                           <sup>13</sup> CZAKON
                                                    RVUE Electroweak
(> 1205)
                  90
                           <sup>14</sup> ERLER
> 564
                  95
                                               99 RVUE Electroweak
                  95
                           <sup>15</sup> ERLER
                                               99 RVUE Electroweak
(> 1673)
                           <sup>16</sup> BARENBOIM 98
                                                    RVUE Electroweak
(> 1700)
                  68
                           <sup>17</sup> CONRAD
                  95
                                               98 RVUE \nu_{\mu} N scattering
> 244
                           <sup>18</sup> VILAIN
                                              95
> 253
                           <sup>19</sup> RIZZO
                                              93 RVUE p\overline{p}; Z_{IR} \rightarrow q\overline{q}
none 200-600
                              WALKER
                                                    COSM Nucleosynthesis; light \nu_R
[> 2000]
                           <sup>20</sup> GRIFOLS
                                                    ASTR SN 1987A; light \nu_R
none 200-500
                           <sup>21</sup> BARBIERI
                                              89B ASTR SN 1987A; light \nu_R
none 350-2400
```

 $^{^{1}}$ DEL-AGUILA 10 give 95% CL limit on the Z-Z' mixing $-0.0012 < \theta < 0.0004$.

² ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.

³BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the Z - Z' mixing parameter ξ . See their Fig. 10 for limits in $M_{Z'} - \xi$ plane.

⁴ ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0013 < \theta < 0.0006$.

 $^{^5}$ ABDALLAH 06C give 95% CL limit $\left|\theta\right|<$ 0.0028. See their Fig. 14 for limit contours in the mass-mixing plane.

⁶ ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00098 < \theta < 0.00190$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.

⁷ CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.

⁸ ABREU 00S give 95% CL limit on Z-Z' mixing $|\theta| <$ 0.0018. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.

⁹ BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.

 $^{^{10}\,\}mathrm{CHAY}$ 00 also find $-\,0.0003 < \theta < 0.0019.$ For g_R free, $m_{Z'} > 430$ GeV.

¹¹ ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_W(Cs)$ is due to the exchange of Z'. The data are better described in a certain class of the Z' models including Z_{LR} and Z_{V} .

 $^{^{12}}$ CASALBUONI 99 discuss the discrepancy between the observed and predicted values of $Q_W(\text{Cs})$. It is shown that the data are better described in a class of models including the Z_{LR} model.

¹³ CZAKON 99 perform a simultaneous fit to charged and neutral sectors. Assumes manifest left-right symmetric model. Finds $|\theta| < 0.0042$.

 $^{^{14}}$ ERLER 99 give 90% CL limit on the Z-Z' mixing -0.0009 < heta < 0.0017.

 $^{^{15}}$ ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E_6 .

Limits for Z_{χ}

 Z_χ is the extra neutral boson in SO(10) \to SU(5) \times U(1) $_\chi$. $g_\chi = e/\cos\theta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho = 1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

neutrino.					
VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT
>4800 (CL = 95%)) OUR L	IMIT			
none 250-4800	95	¹ AAD	19L	ATLS	$pp; Z'_{\chi} \rightarrow e^+e^-, \mu^+\mu^-$
>4100	95	² AABOUD	17 AT	ATLS	$pp; Z_{\chi}^{\prime r} \rightarrow e^+e^-, \mu^+\mu^-$
• • • We do not us	e the fol	lowing data for ave	rages,	fits, lim	nits, etc. • • •
		³ BOBOVNIKOV	′ 18	RVUE	pp, $Z_{\chi}' \rightarrow W^+W^-$
>3050	95	⁴ AABOUD	16 U	ATLS	$pp; Z_{\gamma}^{\uparrow} \rightarrow e^+e^-, \mu^+\mu^-$
>2620	95	⁵ AAD	14V	ATLS	$pp, Z_{\chi}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>1970	95	⁶ AAD	12 CC	ATLS	$pp, Z_{\chi}^{\uparrow} \rightarrow e^+e^-, \mu^+\mu^-$
> 930	95	⁷ AALTONEN	111	CDF	$p\overline{p}; Z_{\Upsilon}^{\prime} \rightarrow \mu^{+}\mu^{-}$
> 903	95	⁸ ABAZOV	11 A	D0	$p\overline{p}, Z_{\chi}^{\prime } \rightarrow e^+e^-$
>1022	95	⁹ DEL-AGUILA	10	RVUE	Electroweak
> 862	95	⁸ AALTONEN	09T	CDF	$p\overline{p}, Z_{\chi}' \rightarrow e^+e^-$
> 892	95	10 AALTONEN	09V	CDF	Repl. by AALTONEN 111
>1141	95	¹¹ ERLER	09	RVUE	Electroweak
> 822	95	⁸ AALTONEN	07H	CDF	Repl. by AALTONEN 09T
> 680	95	SCHAEL	07A	ALEP	e^+e^-
> 545	95	¹² ABDALLAH	06 C	DLPH	e^+e^-
> 740		⁸ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
> 690	95	¹³ ABULENCIA	05A	CDF	$p\overline{p}; Z'_{\chi} \rightarrow e^+e^-, \mu^+\mu^-$
> 781	95	¹⁴ ABBIENDI	04G	OPAL	e^+e^-
>2100		¹⁵ BARGER	03 B	COSM	Nucleosynthesis; light $ u_R$
> 680	95	¹⁶ CHEUNG	01 B	RVUE	Electroweak
> 440	95	¹⁷ ABREU	00s	DLPH	e^+e^-
> 533	95	¹⁸ BARATE	001	ALEP	Repl. by SCHAEL 07A
> 554	95	¹⁹ CHO	00	RVUE	Electroweak
,	- •	²⁰ ERLER	00	RVUE	Cs
		²¹ ROSNER	00	RVUE	Cs
> 545	95	²² ERLER	99	RVUE	Electroweak

 $^{^{16}}$ BARENBOIM 98 also gives 68% CL limits on the Z-Z' mixing $-0.0005 < \theta < 0.0033$. Assumes Higgs sector of minimal left-right model.

 $^{^{17}}$ CONRAD 98 limit is from measurements at CCFR, assuming no Z- Z^\prime mixing.

 $^{^{18}}$ VILAIN 94B assume $m_t=150$ GeV and $\theta=0$. See Fig. 2 for limit contours in the mass-mixing plane.

 $^{^{19}\,\}mathrm{RIZZO}$ 93 analyses CDF limit on possible two-jet resonances.

 $^{^{20}}$ GRIFOLS 90 limit holds for $m_{\nu_R}\lesssim 1$ MeV. A specific Higgs sector is assumed. See also GRIFOLS 90D, RIZZO 91.

 $^{^{21}}$ BARBIERI 89B limit holds for $m_{\nu_R} \leq$ 10 MeV. Bounds depend on assumed supernova core temperature.

(> 1368)		²³ ERLER	99	RVUE	Electroweak
> 215	95	²⁴ CONRAD	98	RVUE	$ u_{\mu}$ N scattering
> 595	95	²⁵ ABE	97s	CDF	$p\overline{p}$; $Z'_{\chi} \rightarrow e^+e^-$, $\mu^+\mu^-$
> 190		²⁶ ARIMA	97	VNS	Bhabha scattering
> 262		²⁷ VILAIN	94 B	CHM2	$ u_{\mu}\mathrm{e} ightarrow \ u_{\mu}\mathrm{e}; \overline{ u}_{\mu}\mathrm{e} ightarrow \ \overline{ u}_{\mu}\mathrm{e}$
[>1470]		²⁸ FARAGGI			Nucleosynthesis; light ν_R
> 231		²⁹ ABE		VNS	
[> 1140]		30 GONZALEZ	90 D	COSM	Nucleosynthesis; light $ u_R$
[> 2100]		³¹ GRIFOLS			SN 1987A; light ν_R

- 1 AAD 19L search for resonances decaying to $\ell^+\ell^-$ in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV.
- ²AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- ³BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the $Z \cdot Z'$ mixing parameter ξ . See their Fig. 9 for limits in $M_{Z'} \xi$ plane.
- ⁴ AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in $p\,p$ collisions at $\sqrt{s}=$ 13 TeV.
- ⁵ AAD 14V search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$ TeV.
- ⁶ AAD 12CC search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV.
- ⁷ AALTONEN 111 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- ⁸ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- 9 DEL-AGUILA 10 give 95% CL limit on the Z-Z' mixing $-0.0011 < \theta < 0.0007$.
- ¹⁰ AALTONEN 09V search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- 11 ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0016 < \theta < 0.0006$.
- 12 ABDALLAH 06C give 95% CL limit $|\theta| <$ 0.0031. See their Fig. 14 for limit contours in the mass-mixing plane.
- ¹³ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- 14 ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00099 < \theta < 0.00194$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.
- 15 BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino $\delta N_{\nu} < \! 1$. The quark-hadron transition temperature $T_c \! = \! 150$ MeV is assumed. The limit with $T_c \! = \! 400$ MeV is $> \! 4300$ GeV.
- 16 CHEUNG 01B limit is derived from bounds on contact interactions in a global electroweak analysis.
- 17 ABREU 00S give 95% CL limit on Z-Z' mixing $|\theta| <$ 0.0017. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.
- ¹⁸ BARATE 00I search for deviations in cross section and asymmetries in $e^+e^- \rightarrow$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- ¹⁹ CHO 00 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 3 for limits in the mass-mixing plane.
- 20 ERLER 00 discuss the possibility that a discrepancy between the observed and predicted values of $Q_W(\text{Cs})$ is due to the exchange of Z'. The data are better described in a certain class of the Z' models including Z_{LR} and $Z_\chi.$
- ²¹ ROSNER 00 discusses the possibility that a discrepancy between the observed and predicted values of $Q_W(Cs)$ is due to the exchange of Z'. The data are better described in a certain class of the Z' models including Z_{χ} .

Limits for Z_{ψ}

 Z_{ψ} is the extra neutral boson in E $_6 o {\sf SO}(10) imes {\sf U}(1)_{\psi}$. $g_{\psi} = e/{\sf cos} heta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho = 1$ but with no further constraints on the Higgs sector. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>4560 (CL = 95%	OUR LI	MIT		
>4560	95	$^{ m 1}$ SIRUNYAN		pp; $Z'_{\psi} \rightarrow e^+e^-$, $\mu^+\mu^-$
none 250-4500	95	² AAD	19L ATLS	pp; $Z_{\psi}^{\gamma} \rightarrow e^+e^-, \mu^+\mu^-$
none 200-3900	95	³ SIRUNYAN		pp; $Z_{\psi}^{\prime} \rightarrow e^+e^-, \mu^+\mu^-$
>3800	95	⁴ AABOUD	17AT ATLS	pp; $Z_{\psi}^{\prime} ightarrow e^+e^-$, $\mu^+\mu^-$
>2820	95	⁵ KHACHATRY.	17T CMS	pp; $Z_{\psi}^{\prime} \rightarrow e^+e^-$, $\mu^+\mu^-$
>1100	95	⁶ CHATRCHYAN	N 120 CMS	pp, $Z_{\psi}^{'} ightarrow ~ au^+ au^-$

• • • We do not use the following data for averages, fits, limits, etc. • •

		⁷ BOBOVNIKOV	18	RVUE	$pp, Z'_{\psi} \rightarrow W^+W^-$
>2740	95	⁸ AABOUD	16 U	ATLS	pp; $Z_{\psi}^{T} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>2570	95	⁹ KHACHATRY	.15AE	CMS	$pp; Z_{\psi}^{T} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>2510	95	¹⁰ AAD	14V	ATLS	pp, $Z_{\psi}^{T} \rightarrow e^{+}e^{-}$, $\mu^{+}\mu^{-}$
>2260	95	¹¹ CHATRCHYAN	13AF	CMS	pp, $Z_{\psi}^{\prime} \rightarrow e^+e^-$, $\mu^+\mu^-$
>1790	95	¹² AAD	12 CC	ATLS	$pp, Z_{\eta}^{\prime} \rightarrow e^{+}e^{-}, \mu^{+}\mu^{-}$
>2000	95	¹³ CHATRCHYAN	112м	CMS	Repl. by CHA- TRCHYAN 13AF
> 917	95	¹⁴ AALTONEN	111	CDF	$p\overline{p}; Z'_{\psi} \rightarrow \mu^{+}\mu^{-}$
> 891	95	¹⁵ ABAZOV	11 A	D0	$p\overline{p}, Z_{\psi}^{T} \rightarrow e^{+}e^{-}$
> 476	95	¹⁶ DEL-AGUILA	10	RVUE	Electroweak
> 851	95	¹⁵ AALTONEN	09т	CDF	$ ho \overline{ ho}$, $Z'_{\psi} ightarrow e^+ e^-$
> 878	95	¹⁷ AALTONEN	09V	CDF	Repl. by AALTONEN 111
> 147	95	¹⁸ ERLER	09	RVUE	Electroweak
> 822	95	¹⁵ AALTONEN	07H	CDF	Repl. by AALTONEN 09T
> 410	95	SCHAEL	07A	ALEP	e^+e^-

 $^{^{22}}$ ERLER 99 give 90% CL limit on the Z-Z' mixing $-0.0020 < \theta < 0.0015$.

²³ ERLER 99 assumes 2 Higgs doublets, transforming as 10 of SO(10), embedded in E_6 .

 $^{^{24}}$ CONRAD 98 limit is from measurements at CCFR, assuming no $Z\text{-}Z^\prime$ mixing.

²⁵ ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) < 40$ fb for $m_{7/} > 600$ GeV at $\sqrt{s} = 1.8$ TeV.

 $^{^{26}}$ Z-Z' mixing is assumed to be zero. \sqrt{s} = 57.77 GeV.

 $^{^{27}}$ VILAIN 94B assume $m_t=150$ GeV and $\theta{=}0$. See Fig. 2 for limit contours in the mass-mixing plane.

²⁸ FARAGGI 91 limit assumes the nucleosynthesis bound on the effective number of neutrinos $\Delta N_{
u}~<~0.5$ and is valid for $m_{
u_R}^{--}~<1$ MeV.

²⁹ ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.

 $^{^{-30}}$ Assumes the nucleosynthesis bound on the effective number of light neutrinos ($\delta extit{N}_{
u}~<~1$)

and that ν_R is light (\lesssim 1 MeV). $^{31}\,\rm GRIFOLS$ 90 limit holds for m_{ν_R} \lesssim 1 MeV. See also GRIFOLS 90D, RIZZO 91.

95	¹⁹ ABDALLAH	06C	DLPH	e^+e^-
	¹⁵ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
95	²⁰ ABULENCIA	05A	CDF	Repl. by AALTONEN 111 and AALTONEN 09T
95	²¹ ABBIENDI	04 G	OPAL	e^+e^-
1		03 B	COSM	Nucleosynthesis; light ν_R
95		00 S	DLPH	e^+e^-
. 95		001	ALEP	Repl. by SCHAEL 07A
95		00	RVUE	Electroweak
95		99	RVUE	Electroweak
. 95	²⁷ CONRAD	98	RVUE	$ u_{\mu}$ N scattering
95	²⁸ ABE	97 S	CDF	$p\overline{p}; Z'_{\psi} \rightarrow e^+e^-, \mu^+\mu^-$
95	²⁹ VILAIN	94 B	CHM2	$ u_{\mu} { m e} \stackrel{'}{ ightarrow} u_{\mu} { m e} ; \overline{ u}_{\mu} { m e} ightarrow \overline{ u}_{\mu} { m e}$
90	³⁰ ABE	90F	VNS	e^+e^-
]		90 D	COSM	Nucleosynthesis; light ν_R
0]	³² GRIFOLS	90 D	ASTR	SN 1987A; light ν_R
	95 95 95 95 95 95 95 95 95 95 95 95 95 9	15 ABULENCIA 20 ABULENCIA 20 ABULENCIA 21 ABBIENDI 22 BARGER 23 ABREU 4 95 24 BARATE 5 95 25 CHO 6 95 26 ERLER 1 95 27 CONRAD 28 ABE 5 95 29 VILAIN 5 90 30 ABE 31 GONZALEZ	15 ABULENCIA 06L 20 ABULENCIA 05A 21 ABBIENDI 04G 22 BARGER 03B 23 ABREU 00S 24 BARATE 00I 25 CHO 00 26 ERLER 99 27 CONRAD 98 28 ABE 97S 29 VILAIN 94B 30 ABE 90F 31 GONZALEZ 90D	15 ABULENCIA 06L CDF 20 ABULENCIA 05A CDF 30 ABULENCIA 05A CDF 31 ABBIENDI 04G OPAL 22 BARGER 03B COSM 32 ABREU 00S DLPH 35 24 BARATE 00I ALEP 35 25 CHO 00 RVUE 36 95 26 ERLER 99 RVUE 36 95 27 CONRAD 98 RVUE 37 CONRAD 98 RVUE 38 ABE 97S CDF 39 VILAIN 94B CHM2 30 ABE 90F VNS 31 GONZALEZ 90D COSM

- ¹ SIRUNYAN 21N search for resonance decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- ²AAD 19L search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- 3 SIRUNYAN 18BB search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- ⁴AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV.
- ⁵ KHACHATRYAN 17T search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$, 13 TeV.
- ⁶ CHATRCHYAN 120 search for resonances decaying to $\tau^+\tau^-$ in pp collisions at $\sqrt{s}=$ _7 TeV.
- ⁷BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot B(Z' \to W^+W^-)$ to constrain the Z Z' mixing parameter ξ . See their Fig. 10 for limits in $M_{Z'} \xi$ plane.
- ⁸ AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=$ 13 TeV.
- ⁹ KHACHATRYAN 15AE search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$ TeV.
- 10 AAD 14V search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=8$ TeV.
- ¹¹ CHATRCHYAN 13AF search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV and 8 TeV.
- 12 AAD 12CC search for resonances decaying to $e^+\,e^-,\,\mu^+\,\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV.
- ¹³ CHATRCHYAN 12M search for resonances decaying to e^+e^- or $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ TeV.
- ¹⁴ AALTONEN 111 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV
- ¹⁵ ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- 16 DEL-AGUILA 10 give 95% CL limit on the Z-Z' mixing -0.0019 < heta < 0.0007.
- ¹⁷ AALTONEN 09V search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- ¹⁸ ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0018 < \theta < 0.0009$.
- 19 ABDALLAH 06C give 95% CL limit $|\theta| <$ 0.0027. See their Fig. 14 for limit contours in the mass-mixing plane.
- ²⁰ ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.

- 21 ABBIENDI 04G give 95% CL limit on Z-Z' mixing -0.00129 < heta < 0.00258. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.
- $^{22}\,\mathrm{BARGER}$ 03B limit is from the nucleosynthesis bound on the effective number of light neutrino δN_{ν} <1. The quark-hadron transition temperature T_{c} =150 MeV is assumed. The limit with T_c =400 MeV is >1100 GeV.
- 23 ABREU 00S give 95% CL limit on Z-Z' mixing | heta| < 0.0018. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.
- 24 BARATE 001 search for deviations in cross section and asymmetries in $e^+e^- o$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in
- 25 CHO 00 use various electroweak data to constrain Z' models assuming $m_H=100$ GeV. See Fig. 3 for limits in the mass-mixing plane.
- 26 ERLER 99 give 90% CL limit on the Z-Z' mixing -0.0013 < heta < 0.0024.
- 27 CONRAD 98 limit is from measurements at CCFR, assuming no Z- Z^\prime mixing.
- ²⁸ ABE 97S find $\sigma(Z') \times B(e^+e^-, \mu^+\mu^-) <$ 40 fb for $m_{Z'} >$ 600 GeV at $\sqrt{s} = 1.8$ TeV.
- $^{29}\,\mathrm{VILAIN}$ 94B assume $m_t=150$ GeV and $\theta{=}0$. See Fig. 2 for limit contours in the mass-mixing plane.
- 30 ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_7 = 91.13 \pm 0.03 \text{ GeV}$.
- 31 Assumes the nucleosynthesis bound on the effective number of light neutrinos $(\delta N_
 u < 1)$ and that ν_R is light (\lesssim 1 MeV). $^{32}\,\rm GRIFOLS$ 90D limit holds for m_{ν_R} \lesssim 1 MeV. See also RIZZO 91.

Limits for Z_n

 Z_{η} is the extra neutral boson in E $_{6}$ models, corresponding to $Q_{\eta}=\sqrt{3/8}~Q_{\chi}~ \sqrt{5/8}~Q_{\psi}.~g_{\eta}=e/{\cos} heta_W$ is assumed unless otherwise stated. We list limits with the assumption $\rho=1$ but with no further constraints on the Higgs sector. Values in parentheses assume stronger constraint on the Higgs sector motivated by superstring models. Values in brackets are from cosmological and astrophysical considerations and assume a light right-handed neutrino.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>3900	95	$^{ m 1}$ AABOUD	17AT ATLS	pp; $Z_n' \rightarrow e^+e^-$, $\mu^+\mu^-$

• • • We do not use the following data for averages, fits, limits, etc. • • •

		² BOBOVNIKOV	/ 18	RVUE	pp, $Z'_n \rightarrow W^+W^-$
>2810	95	³ AABOUD			$pp; Z_n^{''} \to e^+e^-, \mu^+\mu^-$
>1870	95	⁴ AAD	12 CC	ATLS	$pp, Z_n^{''} \rightarrow e^+e^-, \mu^+\mu^-$
> 938	95	⁵ AALTONEN	111	CDF	$p\overline{p}; Z_n^{\prime\prime} \rightarrow \mu^+\mu^-$
> 923	95	⁶ ABAZOV	11A	D0	$p\overline{p}, Z_{\eta}^{\prime\prime} \rightarrow e^+e^-$
> 488	95	⁷ DEL-AGUILA	10	RVUE	Electroweak
> 877	95	⁶ AALTONEN	09т	CDF	$p\overline{p}, Z'_n \rightarrow e^+e^-$
> 904	95	⁸ AALTONEN	09V	CDF	Repl. by AALTONEN 111
> 427	95	⁹ ERLER	09	RVUE	Electroweak
> 891	95	⁶ AALTONEN	07н	CDF	Repl. by AALTONEN 09T
> 350	95	SCHAEL	07A	ALEP	e^+e^-
> 360	95	¹⁰ ABDALLAH	06 C	DLPH	e^+e^-
> 745		⁶ ABULENCIA	06L	CDF	Repl. by AALTONEN 07H
> 720	95	¹¹ ABULENCIA	05A	CDF	Repl. by AALTONEN 111 and AALTONEN 09T

>	515	95	¹² ABBIENDI	04 G	OPAL	e^+e^-
>	1600		¹³ BARGER	03 B	COSM	Nucleosynthesis; light $ u_R$
>	310	95	¹⁴ ABREU	00 S	DLPH	e^+e^-
>	329	95	¹⁵ BARATE	001	ALEP	Repl. by SCHAEL 07A
>	619	95	¹⁶ CHO	00	RVUE	Electroweak
>	365	95	¹⁷ ERLER	99	RVUE	Electroweak
>	87	95	¹⁸ CONRAD	98	RVUE	$ u_{\mu}N$ scattering
>	620	95	¹⁹ ABE	97 S		$p\overline{p}; Z'_{\eta} \rightarrow e^+e^-, \mu^+\mu^-$
>	100	95	²⁰ VILAIN	94 B	CHM2	$\nu_{\mu} {\rm e} \stackrel{'}{ ightarrow} \nu_{\mu} {\rm e} ; \overline{\nu}_{\mu} {\rm e} ightarrow \overline{\nu}_{\mu} {\rm e}$
>	125	90	²¹ ABE	90F	VNS	e^+e^-
[>	820]		²² GONZALEZ	90 D	COSM	Nucleosynthesis; light $ u_R$
[>	3300]		²³ GRIFOLS			SN 1987A; light ν_R
[>	· 1040]		²² LOPEZ	90		Nucleosynthesis; light ν_R
						• •

- ¹AABOUD 17AT search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$
- 2 BOBOVNIKOV 18 use the ATLAS limits on $\sigma(pp \to Z') \cdot \mathrm{B}(Z' \to W^+W^-)$ to constrain the Z-Z' mixing parameter ξ . See their Fig. 9 for limits in $M_{Z'} - \xi$ plane.
- 3 AABOUD 16U search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=13$ TeV. 4 AAD 12CC search for resonances decaying to e^+e^- , $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$
- TeV. 5 AALTONEN 111 search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.96$
- TeV. 6 ABAZOV 11A, AALTONEN 09T, AALTONEN 07H, and ABULENCIA 06L search for resonances decaying to e^+e^- in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV.
- resonances decaying to e^+e^- in pp collisions at $\sqrt{s}=1.55$. 7 DEL-AGUILA 10 give 95% CL limit on the Z-Z' mixing $-0.0023 < \theta < 0.0027$. 8 AALTONEN 09V search for resonances decaying to $\mu^+\mu^-$ in $p\overline{p}$ collisions at $\sqrt{s}=1.55$
- $9^{1.96}\,\text{TeV}$. 9 ERLER 09 give 95% CL limit on the Z-Z' mixing $-0.0047 < \theta < 0.0021$. 0.0092. See their Fig. 14 for limit $|\theta| < 0.0092$. See their Fig. 14 for limit $|\theta| < 0.0092$. 10 ABDALLAH 06C give 95% CL limit | heta| < 0.0092. See their Fig. 14 for limit contours in the mass-mixing plane.
- 11 ABULENCIA 05A search for resonances decaying to electron or muon pairs in $p\overline{p}$ collisions at $\sqrt{s} = 1.96$ TeV.
- ¹² ABBIENDI 04G give 95% CL limit on Z-Z' mixing $-0.00447 < \theta < 0.00331$. See their Fig. 20 for the limit contour in the mass-mixing plane. $\sqrt{s} = 91$ to 207 GeV.
- 13 BARGER 03B limit is from the nucleosynthesis bound on the effective number of light neutrino δN_{ν} <1. The quark-hadron transition temperature T_c =150 MeV is assumed. The limit with T_c =400 MeV is >3300 GeV.
- 14 ABREU 00S give 9 5% CL limit on Z-Z' mixing | heta| < 0.0024. See their Fig. 6 for the limit contour in the mass-mixing plane. \sqrt{s} =90 to 189 GeV.
- 15 BARATE 001 search for deviations in cross section and asymmetries in $e^+e^- o$ fermions at \sqrt{s} =90 to 183 GeV. Assume θ =0. Bounds in the mass-mixing plane are shown in their Figure 18.
- 16 CHO 30 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 3 for limits in the mass-mixing plane.
- 17 ERLER 99 give 90% CL limit on the Z-Z' mixing $-0.0062 < \theta < 0.0011$.
- 18 CONRAD 98 limit is from measurements at CCFR, assuming no Z-Z' mixing. 19 ABE 97S find $\sigma(Z')\times \mathrm{B}(e^+e^-,\mu^+\mu^-)<$ 40 fb for $m_{Z'}>$ 600 GeV at $\sqrt{s}=$ 1.8 TeV.
- 20 VILAIN 94B assume $m_t=150$ GeV and $\theta{=}0$. See Fig. 2 for limit contours in the mass-mixing plane.
- 21 ABE 90F use data for R, $R_{\ell\ell}$, and $A_{\ell\ell}$. ABE 90F fix $m_W=80.49\pm0.43\pm0.24$ GeV and $m_Z=91.13\pm0.03$ GeV.
- 22 These authors claim that the nucleosynthesis bound on the effective number of light

neutrinos ($\delta N_{\nu} < 1$) constrains Z' masses if ν_R is light ($\lesssim 1$ MeV). 23 GRIFOLS 90 limit holds for $m_{\nu_R} \lesssim 1$ MeV. See also GRIFOLS 90D, RIZZO 91.

Limits for other Z'

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
none 800-3700	95	¹ SIRUNYAN	21X CMS	$Z' \rightarrow HZ$
>2650	95	² AAD	20AJ ATLS	$Z' \rightarrow HZ$
>3900	95	³ AAD	20AM ATLS	$Z' \rightarrow t \overline{t}$
>3900	95	⁴ AAD	20AT ATLS	$Z' \rightarrow WW$
none 1200-3500	95	⁵ SIRUNYAN	20Q CMS	$Z' \rightarrow WW$
none 580-3100	95	⁶ AABOUD	19AS ATLS	$Z' \rightarrow t \overline{t}$
none 1300-3100	95	⁷ AAD	19D ATLS	$Z' \rightarrow WW$
>3800	95	⁸ SIRUNYAN	19AA CMS	$Z' \rightarrow t \overline{t}$
>3700	95	⁹ SIRUNYAN	19CP CMS	$Z' \rightarrow WW, HZ, \ell^+\ell^-$
>1800	95	¹⁰ SIRUNYAN	19ı CMS	$Z' \rightarrow HZ$
none 600-2100	95	¹¹ AABOUD	18AB ATLS	$Z' ightarrow b \overline{b}$
none 500-2830	95	¹² AABOUD	18AI ATLS	$Z' \rightarrow HZ$
none 300-3000	95	¹³ AABOUD	18AK ATLS	$Z' \rightarrow WW$
>1300	95	¹⁴ AABOUD	18B ATLS	$Z' \rightarrow WW$
none 400-3000	95	¹⁵ AABOUD	18BI ATLS	$Z' \rightarrow t \overline{t}$
none 1200-2800	95	¹⁶ AABOUD	18F ATLS	
>2300	95	¹⁷ SIRUNYAN	18ED CMS	
none 1200-2700	95	¹⁸ SIRUNYAN	18P CMS	$Z' \rightarrow WW$
>2900	95	¹⁹ AABOUD	17AK ATLS	$Z' \rightarrow q \overline{q}$
none 1100-2600	95	²⁰ AABOUD	17AO ATLS	
>2300	95	²¹ SIRUNYAN	17AK CMS	
>2500	95	²² SIRUNYAN	17Q CMS	
>1190	95	²³ SIRUNYAN	17R CMS	
none 1210-2260	95	²³ SIRUNYAN	17R CMS	$Z' \rightarrow HZ$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

²⁴ AAD	22 ATLS	$pp ightarrow \ b \overline{b} Z' ightarrow \ b \overline{b} b \overline{b}$
²⁵ AAD	21AQ ATLS	pp , $\ell^+\ell^-\ell^+\ell^-$
²⁶ AAD	21AZ ATLS	DM mediator Z'
²⁷ AAD	21BB ATLS	$Z' \rightarrow AH$
²⁸ AAD	21D ATLS	dark Higgs Z^\prime
²⁹ AAD	21K ATLS	$Z' \rightarrow \chi \chi$
³⁰ BURAS	21 RVUE	leptophilic Z'
³¹ CADEDDU	21 RVUE	u-nucleus scattering
³² COLARESI	21 HPGE	u-nucleus scattering
³³ KRIBS	21 RVUE	ep scattering
³⁴ TUMASYAN	21D CMS	$Z' \rightarrow \chi \chi$
³⁵ AAD	20AF ATLS	$Z' ightarrow H \gamma$
³⁶ AAD	20T ATLS	DM simplified Z'
³⁷ AAD	20W ATLS	DM simplified Z'
³⁸ AAIJ	20AL LHCB	$Z' ightarrow \ \mu^+ \mu^-$
³⁹ ADACHI	20 BEL2	$e^+e^- ightarrow~\mu^+\mu^-Z'$,
		$e^\pm \mu^\mp Z'$
⁴⁰ SIRUNYAN	20AI CMS	$Z' \rightarrow q \overline{q}$
⁴¹ SIRUNYAN	20AQ CMS	$Z' ightarrow \ \mu^+ \mu^-$

```
<sup>42</sup> SIRUNYAN
                                                                                         Z' \rightarrow q \overline{q}
                                                                       20M CMS
                                             <sup>43</sup> AABOUD
                                                                       19AJ ATLS
                                                                                         Z' \rightarrow q \overline{q}
                                             <sup>44</sup> AABOUD
                                                                       19D ATLS
                                                                                         Z' \rightarrow q \overline{q}
                                             <sup>45</sup> AABOUD
                                                                       19∨ ATLS
                                                                                         DM simplified Z'
                                             <sup>46</sup> AAD
                                                                       19L ATLS
                                                                                         Z' \rightarrow e^+e^-, \mu^+\mu^-
                                             <sup>47</sup> LONG
                                                                       19
                                                                              RVUE Electroweak
                                             <sup>48</sup> PANDEY
                                                                       19
                                                                              RVUE neutrino NSI
                                                                                         Z' \rightarrow tT, T \rightarrow Ht,
                                             <sup>49</sup> SIRUNYAN
                                                                       19AL CMS
                                                                                             Zt, Wb
                                             <sup>50</sup> SIRUNYAN
                                                                      19AN CMS
                                                                                         DM simplified Z'
                                             <sup>51</sup> SIRUNYAN
                                                                      19CB CMS
                                                                                         Z' \rightarrow q \overline{q}
                                             <sup>52</sup> SIRUNYAN
                                                                                         Z' \rightarrow q \overline{q}
                                                                       19CD CMS
                                             <sup>53</sup> SIRUNYAN
                                                                      19D CMS
                                                                                         Z' \rightarrow H\gamma
                                             <sup>54</sup> AABOUD
                                                                      18AA ATLS
                                                                                         Z' \rightarrow H\gamma
                                             <sup>55</sup> AABOUD
                                                                                         Z' \rightarrow WW.HZ. \ell^+\ell^-
                                                                       18CJ ATLS
>4500
                                 95
                                             <sup>56</sup> AABOUD
                                                                                         Z' \rightarrow q \overline{q}
                                                                       18N ATLS
                                             <sup>57</sup> AAIJ
                                                                       18AQ LHCB
                                                                                         Z' \rightarrow \mu^+ \mu^-
                                             <sup>58</sup> SIRUNYAN
                                                                      18DR CMS
                                                                                         Z' \rightarrow \mu^+ \mu^-
                                             <sup>59</sup> SIRUNYAN
                                                                      18G CMS
                                             <sup>60</sup> SIRUNYAN
                                                                                         Z' \rightarrow b\overline{b}
                                                                       181
                                                                            CMS
                                             <sup>61</sup> AABOUD
>1580
                                 95
                                                                       17B ATLS
                                                                                         Z' \rightarrow HZ
                                             62 KHACHATRY...17AX CMS
                                                                                         Z' \rightarrow \ell\ell\ell\ell
                                             63 KHACHATRY...17∪ CMS
                                             <sup>64</sup> SIRUNYAN
                                 95
                                                                      17A CMS
                                                                                         Z' \rightarrow WW
>1700
                                             <sup>65</sup> SIRUNYAN
                                                                       17AP CMS
                                                                                         Z' \rightarrow
                                                                                                  HA
                                             <sup>66</sup> SIRUNYAN
                                                                                         Z' \rightarrow q \overline{q}
                                                                      17T CMS
                                             <sup>67</sup> SIRUNYAN
                                                                      17V CMS
                                             <sup>68</sup> AABOUD
                                                                                         Z' \rightarrow b\overline{b}
none 1100-1500
                                                                       16
                                                                              ATLS
                                 95
                                             69 AAD
                                                                       16L ATLS
                                                                                         Z' \rightarrow a\gamma, a \rightarrow \gamma\gamma
                                             70 AAD
                                                                       16s ATLS
                                                                                         Z' \rightarrow q \overline{q}
none 1500-2600
                                 95
none 1000-1100, none
                                             <sup>71</sup> KHACHATRY...16AP CMS
                                                                                         Z' \rightarrow HZ
                                 95
    1300-1500
                                             <sup>72</sup> KHACHATRY...16E CMS
                                                                                         Z' \rightarrow t \overline{t}
                                 95
 >2400
                                            73_{AAD}
                                                                                         Z' \rightarrow t \overline{t}
                                                                      15AO ATLS
                                             <sup>74</sup> AAD
                                                                      15AT ATLS
                                                                                         monotop
                                             75 AAD
                                                                                         H \rightarrow ZZ', Z'Z';
                                                                       15CD ATLS
                                                                                             Z' \rightarrow \ell^+ \ell^-
                                             <sup>76</sup> KHACHATRY...15F CMS
                                                                                         monotop
                                             <sup>77</sup> KHACHATRY...150 CMS
                                                                                         Z' \rightarrow HZ
                                             <sup>78</sup> AAD
                                                                      14AT ATLS
                                                                                         Z' \rightarrow Z\gamma
                                             <sup>79</sup> KHACHATRY...14A CMS
                                                                                         Z' \rightarrow VV
                                             <sup>80</sup> MARTINEZ
                                                                       14
                                                                              RVUE Electroweak
                                             <sup>81</sup> AAD
none 500-1740
                                                                       13AQ ATLS
                                                                                         Z' \rightarrow t \overline{t}
                                 95
                                             <sup>82</sup> AAD
                                                                      13G ATLS
                                                                                         Z' \rightarrow t \overline{t}
>1320 or 1000-1280
                                 95
                                             <sup>82</sup> AALTONEN
                                                                      13A CDF
> 915
                                 95
                                             83 CHATRCHYAN 13AP CMS
>1300
                                 95
                                                                                         Z' \rightarrow t \overline{t}
                                             82 CHATRCHYAN 13BM CMS
>2100
                                 95
                                             <sup>84</sup> AAD
                                                                      12BV ATLS
                                                                                         Z' \rightarrow t \overline{t}
                                            <sup>85</sup> AAD
                                                                       12K ATLS
```

		⁸⁶ AALTONEN	12 AR		Chromophilic
		⁸⁷ AALTONEN	12N	CDF	$Z' \rightarrow \overline{t}u$
> 835	95	⁸⁸ ABAZOV	12R	D0	$Z' \rightarrow t \overline{t}$
		⁸⁹ CHATRCHYAN	12AI	CMS	$Z' \rightarrow t \overline{u}$
		⁹⁰ CHATRCHYAN	12AQ	CMS	$Z' \rightarrow t \overline{t}$
>1490	95	⁸² CHATRCHYAN	12 BL	CMS	$Z' \rightarrow t \overline{t}$
					$Z' \rightarrow t \overline{t}$
		⁹² AALTONEN			
		⁹³ CHATRCHYAN			
			08 D	CDF	$Z' \rightarrow t \overline{t}$
			08Y	CDF	$Z' \rightarrow t \overline{t}$
			08AA	D0	$Z' \rightarrow t \overline{t}$
		⁹⁵ ABAZOV	04A	D0	Repl. by ABAZOV 08AA
		⁹⁶ BARGER	03 B	COSM	Nucleosynthesis; light ν_R
		⁹⁷ CHO	00	RVUE	E_6 -motivated
		⁹⁸ CHO	98	RVUE	0
		⁹⁹ ABE	97G	CDF	$Z' \rightarrow \overline{q}q$

- 1 SIRUNYAN 21X search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'} > 3500$ GeV for $g_V=1$.
- ² AAD 20AJ search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2200$ GeV for $g_V=1$. See their Fig. 6 for limits on $\sigma \cdot B$.
- 3 AAD 20AM search for a resonance decaying to $t\,\overline{t}$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a leptophobic top-color Z' with $\Gamma_{Z'}/M_{Z'}=0.01$. The limit becomes $M_{Z'}>4700$ GeV for $\Gamma_{Z'}/M_{Z'}=0.03$.
- ⁴ AAD 20AT search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>3500$ GeV for $g_V=1$. See their Fig. 14 for limits on $\sigma \cdot B$.
- 5 SIRUNYAN 20Q search for resonances decaying to $W\,W$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$.
- ⁶ AABOUD 19AS search for a resonance decaying to $t\bar{t}$ in $p\bar{p}$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a top-color Z' with $\Gamma_{Z'}/M_{Z'}=0.01$. Limits are also set on Z' masses in simplified Dark Matter models.
- 7 AAD 19D search for resonances decaying to $W\,W$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2900$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>3800$ GeV and $M_{Z'}>3500$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 9 for limits on $\sigma\cdot B$.
- ⁸ SIRUNYAN 19AA search for a resonance decaying to $t\overline{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a leptophobic top-color Z' with $\Gamma_{Z'}/M_{Z'}=0.01$.
- ⁹ SIRUNYAN 19CP present a statistical combinations of searches for Z' decaying to pairs of bosons or leptons in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. If we assume $M_{Z'}=M_{W'}$, the limit becomes $M_{Z'}>4500$ GeV for $g_V=3$ and $M_{Z'}>5000$ GeV for $g_V=1$. See their Figs. 2 and 3 for limits on $\sigma \cdot B$.
- 10 SIRUNYAN 191 search for resonances decaying to ZW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2800$ GeV if we assume $M_{Z'}=M_{W'}$.

- ¹¹ AABOUD 18AB search for resonances decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' with SM-like couplings to quarks. See their Fig. 6 for limits on $\sigma \cdot B$. Additional limits on a Z' axial-vector mediator in a simplified dark-matter model are shown in Fig. 7.
- 12 AABOUD 18AI search for resonances decaying to HZ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2650$ GeV for $g_V=1$. If we assume $M_{W'}=M_{Z'}$, the limit increases $M_{Z'}>2930$ GeV and $M_{Z'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig. 5 for limits on $\sigma\cdot B$.
- ¹³ AABOUD 18AK search for resonances decaying to WW in pp collisions at $\sqrt{s}=1$ 3 TeV. The limit quoted above is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2750$ GeV for $g_V=1$.
- ¹⁴ AABOUD 18B search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=1$. See their Fig.11 for limits on $\sigma \cdot B$.
- 15 AABOUD 18BI search for a resonance decaying to $t\bar{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for a top-color assisted TC Z' with $\Gamma_{Z'}/M_{Z'}=0.01$. The limits for wider resonances are available. See their Fig. 14 for limits on $\sigma \cdot B$.
- ¹⁶ AABOUD 18F search for resonances decaying to WW in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2200$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>3500$ GeV and $M_{Z'}>3100$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.5 for limits on $\sigma:B$
- 17 SIRUNYAN 18ED search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The limit above is for heavy-vector-triplet Z' with $g_V=3$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2900$ GeV and $M_{Z'}>2800$ GeV for $g_V=3$ and $g_V=1$, respectively.
- ¹⁸ SIRUNYAN 18P give this limit for a heavy-vector-triplet Z' with $g_V=3$. If they assume $M_{Z'}=M_{W'}$, the limit increases to $M_{Z'}>3800$ GeV.
- ¹⁹ AABOUD 17AK search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' boson having axial-vector coupling strength with quarks $g_q=0.2$. The limit is 2100 GeV if $g_q=0.1$.
- ²⁰ AABOUD 17AO search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a Z' in the heavy-vector-triplet model with $g_V=3$. See their Fig.4 for limits on $\sigma \cdot B$.
- ²¹ SIRUNYAN 17AK search for resonances decaying to WW or HZ in pp collisions at $\sqrt{s}=8$ and 13 TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>2200$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2400$ GeV for both $g_V=3$ and $g_V=1$. See their Fig.1 and 2 for limits on $\sigma\cdot B$.
- ²² SIRUNYAN 17Q search for a resonance decaying to $t\overline{t}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a resonance with relative width $\Gamma_{Z'}$ / $M_{Z'}=0.01$. Limits for wider resonances are available. See their Fig.6 for limits on $\sigma \cdot B$.
- 23 SIRUNYAN 17R search for resonances decaying to HZ in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. Mass regions $M_{Z'}<1150$ GeV and 1250 GeV < $M_{Z'}$ < 1670 GeV are excluded for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the excluded mass regions are 1000 < $M_{Z'}$ < 2500 GeV and 2760 < $M_{Z'}$ < 3300 GeV for $g_V=3$; 1000 < $M_{Z'}$ < 2430 GeV and 2810 < $M_{Z'}$ < 3130 GeV for $g_V=1$. See their Fig.5 for limits on $\sigma \cdot B$.
- ²⁴ AAD 22 search for $b\overline{b}Z'$ productions in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into $b\overline{b}$. See their Fig.4 for limits on $\sigma \cdot B$.

- ²⁵ AAD 21AQ limits are for a B-L gauge boson model derived from their measurements on four-lepton differential cross sections. See their Fig. 13 for exclusion limits on the B-L breaking Higgs boson mass.
- 26 AAD 21AZ search for DM mediator Z' produced in association with a SM Higgs boson in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay invisibly $Z'\to \chi\chi$. See their Fig.7 for limits in $M_{Z'}-M_{\chi}$ plane.
- ²⁷ AAD 21BB search for Z' productions in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into a SM Higgs boson H and an invisible particle A. See their Fig.7 for limits in $M_{Z'}-M_A$ plane.
- 28 AAD 21D set limits on a dark Higgs model with a spin-1 mediator Z^\prime and a scalar dark Higgs boson s. Dark Higgs s is assumed to decay into WW or ZZ. See their Fig.4 for limits in $M_{Z^\prime}-M_{\rm S}$ plane.
- ²⁹ AAD 21K search for $\gamma + E_T$ events in pp collision at $\sqrt{s} = 13$ TeV. See their Fig. 5 for limits on Z' particle invisibly decaying to $\chi\chi$.
- 30 BURAS 21 performed global fit to leptophilic Z' models using a large number of observables.
- 31 CADEDDU 21 obtain limits on Z' coupling $g_{Z'}$ from coherent ν -nucleus scattering data collected by COHERENT experiment. For limits in the $M_{Z'}-g_{Z'}$ plane, see their Figures 3 and 4 for the universal Z' model and Figures 5 and 6 for the B-L model.
- 32 COLARESI 21 obtain limits on Z' coupling from coherent ν -nucleus scattering data collected by a Ge detector at the Dresden-II power reactor. See their Fig.7 for limits in mass-coupling plane.
- 33 KRIBS 21 set decay-agnostic limits on kinetic mixing parameter between U(1) $_Y$ field and new heavy abelian vector boson (dark photon) field using the HERA ep collision data. See their Fig. 3 for limits in mass-mixing plane.
- 34 TUMASYAN 21D search for energetic jets $+ \not\!\!E_T$ events in pp collisions at $\sqrt{s}=13$ TeV. Z' is assumed to decay into a pair of invisible particles $\chi\chi$. See their Fig. 7 for limits on signal strength in $M_{Z'}-M_\chi$ plane, and Fig. 8 for limits on signal strength in quark and dark matter coupling vs mediator mass.
- 35 AAD 20AF search for resonances decaying to $H\gamma$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 1c for limits on $\sigma \cdot B$ for the mass range 0.7 < $m_{7'}$ < 4 TeV.
- 36 AAD 20T search for Dark Matter mediator Z' decaying invisibly or decaying to $q\overline{q}$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits in $M_{Z'}-g_q$ plane from the inclusive category. See their Fig. 7(a) for limits on the product of the cross section, acceptance, b-tagging efficiency, and branching fraction from the 2 b-tag category.
- 37 AAD 20W search for a Dark Matter (DM) simplified model Z' produced in association with W in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits on Z' production cross section.
- 38 AAIJ 20AL search for spin-0 and spin-1 resonances decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV in the mass regions M $_{Z'}<60$ GeV, with non-negligible widths considered above 20 GeV. See their Figs. 7, 8, and 9 for limits on $\sigma\cdot B$.
- ³⁹ ADACHI 20 search for production of Z' in e^+e^- collisions. The Z' is assume to decay invisibly. See their Fig. 3 and Fig. 5 for limits on Z' coupling and $\sigma(e^+e^- \to e^\pm \mu^\mp Z')$.
- ⁴⁰ SIRUNYAN 20AI search for broad resonances decaying into dijets in pp collisions at \sqrt{s} = 13 TeV. See their Fig. 11 for exclusion limits in mass-coupling plane.
- ⁴¹ SIRUNYAN 20AQ search for a narrow resonance lighter than 200 GeV decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 3 for limits on Z' kinetic mixing coefficient.
- 42 SIRUNYAN 20M search for a narrow resonance with a mass between 350 and 700 GeV in pp collisions at $\sqrt{s}=13$ TeV. See their Fig.3 for exclusion limits in mass-coupling plane.

- ⁴³ AABOUD 19AJ search in pp collisions at $\sqrt{s}=13$ TeV for a new resonance decaying to $q\overline{q}$ and produced in association with a high p_T photon. For a leptophobic axial-vector Z' in the mass region 250 GeV $< M_{Z'} < 950$ GeV, the Z' coupling with quarks g_q is constrained below 0.18. See their Fig.2 for limits in $M_{Z'} g_q$ plane.
- ⁴⁴ AABOUD 19D search in pp collisions at $\sqrt{s}=13$ TeV for a new resonance decaying to $q\overline{q}$ and produced in association with a high- p_T photon or jet. For a leptophobic axial-vector Z' in the mass region 100 GeV $< M_{Z'} <$ 220 GeV, the Z' coupling with quarks g_q is constrained below 0.23. See their Fig. 6 for limits in $M_{Z'} g_q$ plane.
- ⁴⁵ AABOUD 19V search for Dark Matter simplified Z' decaying invisibly or decaying to fermion pair in pp collisions at $\sqrt{s} = 13$ TeV.
- ⁴⁶ AAD 19L search for resonances decaying to $\ell^+\ell^-$ in pp collisions at $\sqrt{s}=$ 13 TeV. See their Fig. 4 for limits in the heavy vector triplet model couplings.
- 47 LONG 19 uses the weak charge data of Cesium and proton to constrain mass of Z' in the 3-3-1 models.
- 48 PANDEY 19 obtain limits on Z' induced neutrino non-standard interaction (NSI) parameter ϵ from LHC and IceCube data. See their Fig.2 for limits in $M_{Z'} \epsilon$ plane, where $\epsilon = g_q \ g_{\nu} \ v^2 \ / \ (2 \ M_{Z'}^2)$.
- ⁴⁹ SIRUNYAN 19AL search for a new resonance decaying to a top quark and a heavy vector-like top partner in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 8 for limits on Z' production cross section.
- 50 SIRUNYAN 19AN search for a Dark Matter (DM) simplified model Z' decaying to H DM DM in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 7 for limits on the signal strength modifiers.
- ⁵¹ SIRUNYAN 19CB search in pp collisions at $\sqrt{s}=13$ TeV for a new resonance decaying to $q\overline{q}$. For a leptophobic Z' in the mass region 50–300 GeV, the Z' coupling with quarks g'_q is constrained below 0.2. See their Figs. 4 and 5 for limits on g'_q in the mass range 50 $< M_{Z'} <$ 450 GeV.
- ⁵² SIRUNYAN 19CD search in pp collisions at \sqrt{s} =13 TeV for a leptophobic Z' produced in association of high p_T ISR photon and decaying to $q\overline{q}$. See their Fig. 2 for limits on the Z' coupling strength g'_q to $q\overline{q}$ in the mass range between 10 and 125 GeV.
- ⁵³ SIRUNYAN 19D search for a narrow neutral vector resonance decaying to $H\gamma$. See their Fig. 3 for exclusion limit in $M_{Z'}-\sigma\cdot B$ plane. Upper limits on the production of $H\gamma$ resonances are set as a function of the resonance mass in the range of 720–3250 GeV.
- ⁵⁴ AABOUD 18AA search for a narrow neutral vector boson decaying to $H\gamma$. See their Fig. 10 for the exclusion limit in M $_{7'}$ σ B plane.
- ^55 AABOUD 18CJ search for heavy-vector-triplet Z' in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for model with $g_V=3$ assuming $M_{Z'}=M_{W'}$. The limit becomes $M_{Z'}>5500$ GeV for model with $g_V=1$.
- ⁵⁶ AABOUD 18N search for a narrow resonance decaying to $q\overline{q}$ in pp collisions at $\sqrt{s}=13$ TeV using trigger level analysis to improve the low mass region sensitivity. See their Fig. 5 for limits in the mass-coupling plane in the Z' mass range 450–1800 GeV.
- ⁵⁷ AAIJ 18AQ search for spin-0 and spin-1 resonances decaying to $\mu^+\mu^-$ in pp collisions at $\sqrt{s}=7$ and 8 TeV in the mass region near 10 GeV. See their Figs. 4 and 5 for limits on σ :B
- 58 SIRUNYAN 18DR searches for $\mu^+\,\mu^-$ resonances produced in association with b-jets in the $p\,p$ collision data with $\sqrt{s}=8$ TeV and 13 TeV. An excess of events near $m_{\mu\,\mu}=28$ GeV is observed in the 8 TeV data. See their Fig. 3 for the measured fiducial signal cross sections at $\sqrt{s}=8$ TeV and the 95% CL upper limits at $\sqrt{s}=13$ TeV.
- 59 SIRUNYAN 18G search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV in the mass range 50–300 GeV. See their Fig.7 for limits in the mass-coupling plane.

- 60 SIRUNYAN 18I search for a narrow resonance decaying to $b\overline{b}$ in pp collisions at $\sqrt{s}=8$ TeV using dedicated b-tagged dijet triggers to improve the sensitivity in the low mass region. See their Fig. 3 for limits on $\sigma \cdot B$ in the Z' mass range 325–1200 GeV.
- 61 AABOUD 17B search for resonances decaying to HZ ($H\to b\overline{b}, c\overline{c}; Z\to \ell^+\ell^-, \nu\overline{\nu}$) in pp collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>1490$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2310$ GeV and $M_{Z'}>1730$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.3 for limits on $\sigma\cdot\overline{B}$.
- ⁶² KHACHATRYAN 17AX search for lepto-phobic resonances decaying to four leptons in pp collisions at $\sqrt{s}=8$ TeV.
- 63 KHACHATRYAN 17U search for resonances decaying to HZ ($H \to b \, \overline{b}; Z \to \ell^+ \ell^-, \nu \overline{\nu}$) in $p \, p$ collisions at $\sqrt{s} = 13$ TeV. The limit on the heavy-vector-triplet model is $M_{Z'} = M_{W'} > 2$ TeV for $g_V = 3$, in which constraints from the $W' \to HW$ ($H \to b \, \overline{b}; W \to \ell \, \nu$) are combined. See their Fig.3 and Fig.4 for limits on $\sigma \cdot B$.
- 64 SIRUNYAN 17A search for resonances decaying to $W\,W$ with $W\,W\to\ell\nu\,q\overline{q},\,q\overline{q}\,q\overline{q}$ in $p\,p$ collisions at $\sqrt{s}=13$ TeV. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$. The limit becomes $M_{Z'}>1600$ GeV for $g_V=1$. If we assume $M_{Z'}=M_{W'}$, the limit increases $M_{Z'}>2400$ GeV and $M_{Z'}>2300$ GeV for $g_V=3$ and $g_V=1$, respectively. See their Fig.6 for limits on $\sigma\cdot B$.
- 65 SIRUNYAN 17AP search for resonances decaying into a SM-like Higgs scalar H and a light pseudo scalar A. A is assumed to decay invisibly. See their Fig.9 for limits on $\sigma \cdot B$.
- 66 SIRUNYAN 17T search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV in the mass range 100–300 GeV. See their Fig.3 for limits in the mass-coupling plane.
- 67 SIRUNYAN 17V search for a new resonance decaying to a top quark and a heavy vector-like top partner T in $p\,p$ collisions at $\sqrt{s}=13$ TeV. See their table 5 for limits on the Z' production cross section for various values of $M_{Z'}$ and M_T in the range of $M_{Z'}=1500-2500$ GeV and $M_T=700-1500$ GeV.
- ⁶⁸ AABOUD 16 search for a narrow resonance decaying into $b\overline{b}$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' with SM-like couplings to quarks. See their Fig.6 for limits on $\sigma \cdot B$.
- ⁶⁹ AAD 16L search for $Z' \to a\gamma$, $a \to \gamma\gamma$ in pp collisions at $\sqrt{s}=8$ TeV. See their Table 6 for limits on $\sigma \cdot B$.
- 70 AAD 16S search for a new resonance decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above is for a leptophobic Z' having coupling strength with quark $g_q=0.3$ and is taken from their Figure 3.
- 71 KHACHATRYAN 16AP search for a resonance decaying to HZ in pp collisions at $\sqrt{s}=8$ TeV. Both H and Z are assumed to decay to fat jets. The quoted limit is for heavy-vector-triplet Z' with $g_V=3$.
- ⁷² KHACHATRYAN 16E search for a leptophobic top-color Z' decaying to $t\overline{t}$ using pp collisions at $\sqrt{s}=8$ TeV. The quoted limit assumes that $\Gamma_{Z'}/m_{Z'}=0.012$. Also $m_{Z'}<2.9$ TeV is excluded for wider topcolor Z' with $\Gamma_{Z'}/m_{Z'}=0.1$.
- ⁷³AAD 15AO search for narrow resonance decaying to $t\bar{t}$ using pp collisions at $\sqrt{s}=8$ TeV. See Fig. 11 for limit on σB .
- ⁷⁴ AAD 15AT search for monotop production plus large missing E_T events in pp collisions at $\sqrt{s}=8$ TeV and give constraints on a Z' model having Z' $u\bar{t}$ coupling. Z' is assumed to decay invisibly. See their Fig. 6 for limits on $\sigma \cdot B$.
- AAD 15CD search for decays of Higgs bosons to 4 ℓ states via Z' bosons, $H \to ZZ' \to 4\ell$ or $H \to Z'Z' \to 4\ell$. See Fig. 5 for the limit on the signal strength of the $H \to ZZ' \to 4\ell$ process and Fig. 16 for the limit on $H \to Z'Z' \to 4\ell$.

- 76 KHACHATRYAN 15F search for monotop production plus large missing E_T events in pp collisions at $\sqrt{s}=8$ TeV and give constraints on a Z' model having $Z'u\bar{t}$ coupling. Z' is assumed to decay invisibly. See Fig. 3 for limits on σB .
- ⁷⁷ KHACHATRYAN 150 search for narrow Z' resonance decaying to ZH in pp collisions at $\sqrt{s}=8$ TeV. See their Fig. 6 for limit on σB .
- ⁷⁸ AAD 14AT search for a narrow neutral vector boson decaying to $Z\gamma$. See their Fig. 3b for the exclusion limit in $m_{7'} \sigma B$ plane.
- ⁷⁹ KHACHATRYAN 14A search for new resonance in the WW ($\ell\nu q \overline{q}$) and the ZZ ($\ell\ell q \overline{q}$) channels using pp collisions at \sqrt{s} =8 TeV. See their Fig.13 for the exclusion limit on the number of events in the mass-width plane.
- 80 MARTINEZ 14 use various electroweak data to constrain the Z^\prime boson in the 3-3-1 models.
- ⁸¹ AAD 13AQ search for a leptophobic top-color Z' decaying to $t\overline{t}$. The quoted limit assumes that $\Gamma_{Z'}/m_{Z'}=0.012$.
- ⁸² CHATRCHYAN 13BM search for top-color Z' decaying to $t\,\overline{t}$ using $p\,p$ collisions at $\sqrt{s}=8$ TeV. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ⁸³ CHATRCHYAN 13AP search for top-color leptophobic Z' decaying to $t\bar{t}$ using pp collisions at $\sqrt{s}=7$ TeV. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ⁸⁴ AAD 12BV search for narrow resonance decaying to $t\bar{t}$ using pp collisions at \sqrt{s} =7 TeV. See their Fig. 7 for limit on $\sigma \cdot B$.
- ⁸⁵ AAD 12K search for narrow resonance decaying to $t\bar{t}$ using pp collisions at \sqrt{s} =7 TeV. See their Fig. 5 for limit on $\sigma \cdot B$.
- ⁸⁶ AALTONEN 12AR search for chromophilic Z' in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV. See their Fig. 5 for limit on $\sigma \cdot B$.
- ⁸⁷ AALTONEN 12N search for $p\overline{p} \to tZ'$, $Z' \to \overline{t}u$ events in $p\overline{p}$ collisions. See their Fig. 3 for the limit on $\sigma \cdot B$.
- ⁸⁸ ABAZOV 12R search for top-color Z' boson decaying exclusively to $t\overline{t}$. The quoted limit is for $\Gamma_{Z'}/m_{Z'}=0.012$.
- ⁸⁹ CHATRCHYAN 12AI search for $pp \to tt$ events and give constraints on a Z' model having $Z'\overline{u}t$ coupling. See their Fig. 4 for the limit in mass-coupling plane.
- ⁹⁰ Search for resonance decaying to $t\bar{t}$. See their Fig. 6 for limit on $\sigma \cdot B$.
- ⁹¹ Search for narrow resonance decaying to $t\overline{t}$. See their Fig. 4 for limit on $\sigma \cdot B$.
- ⁹² Search for narrow resonance decaying to $t\bar{t}$. See their Fig. 3 for limit on $\sigma \cdot B$.
- ⁹³ CHATRCHYAN 110 search for same-sign top production in pp collisions induced by a hypothetical FCNC Z' at $\sqrt{s} = 7$ TeV. See their Fig. 3 for limit in mass-coupling plane.
- ⁹⁴ Search for narrow resonance decaying to $t\bar{t}$. See their Fig. 3 for limit on $\sigma \cdot B$.
- ⁹⁵ Search for narrow resonance decaying to $t\bar{t}$. See their Fig. 2 for limit on $\sigma \cdot B$.
- 96 BARGER 03B use the nucleosynthesis bound on the effective number of light neutrino δN_{ν} . See their Figs. 4–5 for limits in general E_6 motivated models.
- 97 CHO 00 use various electroweak data to constrain Z' models assuming m_H =100 GeV. See Fig. 2 for limits in general E_6 -motivated models.
- 98 CHO 98 study constraints on four-Fermi contact interactions obtained from low-energy electroweak experiments, assuming no Z-Z' mixing.
- ⁹⁹ Search for Z' decaying to dijets at \sqrt{s} =1.8 TeV. For Z' with electromagnetic strength coupling, no bound is obtained.

Searches for Z' with Lepton-Flavor-Violating decays

The following limits are obtained from $p\overline{p}$ or $pp \to Z'X$ with Z' decaying to the mode indicated in the comments.

VALUE	DOCUMENT ID	TECN	COMMENT
• • • We do not use the following	data for averages	, fits, limits, e	etc. • • •
	$^{ m 1}$ AABOUD		$Z' ightarrow \ \mathrm{e}\mu,\mathrm{e} au,\mu au$
	² SIRUNYAN		
			$Z' ightarrow \; e \mu$, $e au$, μau
	⁴ KHACHATRY.	16BE CMS	$Z' ightarrow e \mu$
	_		$Z' o$ e μ , e $ au$, μau
		11H ATLS	•
		11z ATLS	
	⁸ ABULENCIA	06м CDF	$Z' ightarrow e \mu$

¹ AABOUD 18CM search for a new particle with lepton-flavor violating decay in pp collisions at $\sqrt{s} = 13$ TeV. See their Figs. 4, 5, and 6 for limits on $\sigma \cdot B$.

Indirect Constraints on Kaluza-Klein Gauge Bosons

Bounds on a Kaluza-Klein excitation of the Z boson or photon in d=1 extra dimension. These bounds can also be interpreted as a lower bound on 1/R, the size of the extra dimension. Unless otherwise stated, bounds assume all fermions live on a single brane and all gauge fields occupy the 4+d-dimensional bulk. See also the section on "Extra Dimensions" in the "Searches" Listings in this Review.

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •
> 4.7		$^{ m 1}$ MUECK		RVUE	Electroweak
> 3.3	95	² CORNET	00	RVUE	$e \nu q q'$
>5000		³ DELGADO	00	RVUE	ϵ_{K}
> 2.6	95	⁴ DELGADO	00	RVUE	Electroweak
> 3.3	95	⁵ RIZZO	00	RVUE	Electroweak

 $^{^2}$ SIRUNYAN 18AT search for a narrow resonance Z' decaying into $e\mu$ in pp collisions at $\sqrt{s}=13$ TeV. See their Fig.5 for limit on $\sigma\cdot B$ in the range of 600 GeV $< M_{Z'} < 5000$ GeV.

³ AABOUD 16P search for new particle with lepton flavor violating decay in pp collisions at $\sqrt{s}=13$ TeV. See their Figs.2, 3, and 4 for limits on $\sigma \cdot B$.

⁴ KHACHATRYAN 16BE search for new particle Z' with lepton flavor violating decay in pp collisions at $\sqrt{s}=8$ TeV in the range of 200 GeV < M $_{Z'}<2000$ GeV. See their Fig.4 for limits on $\sigma \cdot B$ and their Table 5 for bounds on various masses.

⁵ AAD 150 search for new particle Z' with lepton flavor violating decay in pp collisions at $\sqrt{s}=8$ TeV in the range of 500 GeV < M $_{Z'}$ < 3000 GeV. See their Fig. 2 for limits on σB .

on σB . 6 AAD 11H search for new particle Z' with lepton flavor violating decay in pp collisions at $\sqrt{s}=7$ TeV in the range of 700 GeV < M $_{Z'}$ < 1000 GeV. See their Fig. 3 for limits on $\sigma \cdot B$.

⁷ AAD 11Z search for new particle Z' with lepton flavor violating decay in pp collisions at $\sqrt{s}=7$ TeV in the range 700 GeV < M $_{Z'}$ < 2000 GeV. See their Fig. 3 for limits on $\sigma \cdot B$.

⁸ ABULENCIA 06M search for new particle Z' with lepton flavor violating decay in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV in the range of 100 GeV < M $_{Z'}$ < 800 GeV. See their Fig. 4 for limits in the mass-coupling plane.

>	2.9	95	⁶ MARCIANO	99	RVUE	Electroweak
>	2.5	95	⁷ MASIP	99	RVUE	Electroweak
>	1.6	90	⁸ NATH	99	RVUE	Electroweak
>	3 4	95	⁹ STRUMIA	99	RVUE	Flectroweak

 $^{^{1}}$ MUECK 02 limit is 2σ and is from global electroweak fit ignoring correlations among observables. Higgs is assumed to be confined on the brane and its mass is fixed. For scenarios of bulk Higgs, of brane-SU(2) $_L$, bulk-U(1) $_Y$, and of bulk-SU(2) $_L$, brane-U(1) $_Y$, the corresponding limits are > 4.6 TeV, > 4.3 TeV and > 3.0 TeV, respectively.

²Bound is derived from limits on $e\nu q q'$ contact interaction, using data from HERA and

 3 Bound holds only if first two generations of quarks lives on separate branes. If quark mixing is not complex, then bound lowers to 400 TeV from Δm_K .

 4 See Figs. 1 and 2 of DELGADO 00 for several model variations. Special boundary conditions can be found which permit KK states down to 950 GeV and that agree with the measurement of $Q_W(Cs)$. Quoted bound assumes all Higgs bosons confined to brane; placing one Higgs doublet in the bulk lowers bound to 2.3 TeV.

 5 Bound is derived from global electroweak analysis assuming the Higgs field is trapped on the matter brane. If the Higgs propagates in the bulk, the bound increases to 3.8 TeV.

 6 Bound is derived from global electroweak analysis but considering only presence of the KK W bosons.

⁷Global electroweak analysis used to obtain bound independent of position of Higgs on brane or in bulk.

⁸ Bounds from effect of KK states on G_F , α , M_W , and M_Z . Hard cutoff at string scale determined using gauge coupling unification. Limits for d=2,3,4 rise to 3.5, 5.7, and 7.8

 9 Bound obtained for Higgs confined to the matter brane with $m_{H} = 500$ GeV. For Higgs in the bulk, the bound increases to 3.5 TeV.

See the related review(s):

Leptoquarks

MASS LIMITS for Leptoquarks from Pair Production

These limits rely only on the color or electroweak charge of the leptoquark.

<i>VALUE</i> (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>1480	95	¹ AAD	21AG ATLS	Scalar LQ. B $(te) = 1$
>1470	95	² AAD	21AG ATLS	Scalar LQ. $B(t\mu) = 1$
>1190	95	³ AAD	21AW ATLS	Scalar LQ. B $(b au)=1$
>1030	95	⁴ AAD	21AW ATLS	Scalar LQ. B $(t au)=1$
>1760	95	⁵ AAD	21AW ATLS	Vector LQ. $\kappa=1$. B $(b au)=1$
>1260	95	⁶ AAD	21s ATLS	Scalar LQ. B $(b u)=1$
>1430	95	⁷ AAD	21T ATLS	Scalar LQ. B $(t au)=1$
> 950	95	⁸ SIRUNYAN	21J CMS	Scalar LQ. B($t\tau$)=B($b\nu$)=0.5
>1650	95	⁹ SIRUNYAN	21J CMS	Vector LQ. κ =1, B($t\nu$) =
		10		B(b au) = 0.5
>1800	95	¹⁰ AAD	20AK ATLS	Scalar LQ. B $(eq)=1$
>1700	95	¹¹ AAD	20AK ATLS	Scalar LQ. B $(\mu q) = 1$
>1240	95	¹² AAD	20s ATLS	Scalar LQ. B $(t u)=1$
>1185	95	¹³ SIRUNYAN	20A CMS	Scalar LQ. B $(ub)=1$
>1140	95	¹⁴ SIRUNYAN	20A CMS	Scalar LQ. B $(ut)=1$
>1140	95	¹⁵ SIRUNYAN	20A CMS	Scalar LQ. B $(uq)=1$ with q
		16		= u, d, s, c
>1925	95	¹⁶ SIRUNYAN	20A CMS	Vector LQ. $\kappa=1$. B(νb) = 1
>1825	95	¹⁷ SIRUNYAN	20A CMS	Vector LQ. $\kappa = 1$. B(νt) = 1
https://pdg.lb	l.gov	Page 3	2	Created: 8/11/2022 09:39

```
<sup>18</sup> SIRUNYAN
                                                                  Vector LQ. \kappa = 1. B(\nu q) = 1
                                                   20A CMS
>1980
                     95
                                                                     with q = u, d, s, c
                              <sup>19</sup> AABOUD
                     95
                                                  19AX ATLS
>1400
                                                                  Scalar LQ. B(eq) = 1
                              <sup>20</sup> AABOUD
                     95
                                                   19AX ATLS
>1560
                                                                  Scalar LQ. B(\mu q) = 1
                              <sup>21</sup> AABOUD
                     95
                                                  19X ATLS
>1000
                                                                  Scalar LQ. B(t\nu) = 1
                              <sup>22</sup> AABOUD
                     95
                                                                  Scalar LQ. B(b\tau) = 1
>1030
                                                  19x ATLS
                              <sup>23</sup> AABOUD
                                                  19x ATLS
                                                                  Scalar LQ. B(b\nu) = 1
> 970
                     95
                              <sup>24</sup> AABOUD
> 920
                     95
                                                  19X ATLS
                                                                  Scalar LQ. B(t\tau) = 1
                              <sup>25</sup> SIRUNYAN
                     95
                                                  19BI CMS
                                                                  Scalar LQ. B(\mu q) + B(\nu q) = 1
>1530
                              <sup>26</sup> SIRUNYAN
>1435
                     95
                                                  19BJ CMS
                                                                  Scalar LQ. B(eq)+B(\nu q)=1
                              <sup>27</sup> SIRUNYAN
>1020
                     95
                                                  19Y CMS
                                                                  Scalar LQ. B(\tau b) = 1
                              <sup>28</sup> SIRUNYAN
                     95
                                                  18cz CMS
                                                                  Scalar LQ. B(\tau t) = 1
none 300-900
                              <sup>29</sup> SIRUNYAN
>1420
                     95
                                                  18EC CMS
                                                                  Scalar LQ. B(\mu t) = 1
                              <sup>30</sup> SIRUNYAN
>1190
                     95
                                                  18EC CMS
                                                                  Vector LQ. \mu t, \tau t, \nu b
                              <sup>31</sup> SIRUNYAN
                     95
                                                  18U CMS
                                                                  Scalar LQ. B(\nu b) = 1
>1100
                              <sup>32</sup> SIRUNYAN
> 980
                     95
                                                  18U
                                                        CMS
                                                                  Scalar LQ. B(\nu q) = 1 with q
                                                                     = u,d,s,c
                              <sup>33</sup> SIRUNYAN
>1020
                     95
                                                  18U
                                                        CMS
                                                                  Scalar LQ. B(\nu t) = 1
                     95
                              <sup>34</sup> SIRUNYAN
                                                  18U
>1810
                                                        CMS
                                                                  Vector LQ. \kappa=1. LQ\rightarrow b\nu
                              <sup>35</sup> SIRUNYAN
                     95
                                                  18U
                                                        CMS
                                                                  Vector LQ. \kappa=1. LQ\rightarrow q\nu
>1790
                                                                     with q = u,d,s,c
                              <sup>36</sup> SIRUNYAN
                     95
                                                  18U CMS
>1780
                                                                  Vector LQ. \kappa=1. LQ\rightarrow t\nu
                              <sup>37</sup> KHACHATRY...17J
                                                        CMS
> 740
                     95
                                                                  Scalar LQ. B(\tau b) = 1
                              <sup>38</sup> SIRUNYAN
                                                  17H
                                                        CMS
> 850
                     95
                                                                  Scalar LQ. B(\tau b) = 1
                              <sup>39</sup> AAD
>1050
                     95
                                                  16G ATLS
                                                                  Scalar LQ. B(eq) = 1
                              <sup>40</sup> AAD
>1000
                     95
                                                  16G
                                                        ATLS
                                                                  Scalar LQ. B(\mu q) = 1
                              <sup>41</sup> AAD
                                                        ATLS
> 625
                     95
                                                  16G
                                                                  Scalar LQ. B(\nu b) = 1
                              <sup>42</sup> AAD
                                                                  Scalar LQ. B(\nu t) = 1
                     95
                                                  16G ATLS
none 200-640
                              <sup>43</sup> KHACHATRY...16AF CMS
>1010
                     95
                                                                  Scalar LQ. B(eq) = 1
                              <sup>44</sup> KHACHATRY...16af CMS
>1080
                     95
                                                                  Scalar LQ. B(\mu q) = 1
                              <sup>45</sup> KHACHATRY...15AJ CMS
                     95
> 685
                                                                  Scalar LQ. B(\tau t) = 1
                     95
                              <sup>46</sup> KHACHATRY...14⊤ CMS
                                                                  Scalar LQ. B(\tau b) = 1
> 740
• • We do not use the following data for averages, fits,
                                                               limits, etc. • • •
                              <sup>47</sup> SIRUNYAN
                                                  19BC CMS
                                                                  Scalar LQ (\rightarrow \mu q) LQ (\rightarrow X)
                                                                     + DM)
                              <sup>48</sup> AAD
> 534
                     95
                                                  13AE ATLS
                                                                  Third generation
                              <sup>49</sup> CHATRCHYAN 13M CMS
> 525
                     95
                                                                  Third generation
                              <sup>50</sup> AAD
> 660
                     95
                                                  12H ATLS
                                                                  First generation
                              51_{AAD}
                     95
                                                  120 ATLS
                                                                  Second generation
   685
>
                              <sup>52</sup> CHATRCHYAN 12AG CMS
                     95
                                                                  First generation
> 830
                              <sup>53</sup> CHATRCHYAN 12AG CMS
> 840
                     95
                                                                  Second generation
> 450
                     95
                              <sup>54</sup> CHATRCHYAN 12BO CMS
                                                                  Third generation
                              <sup>55</sup> AAD
                                                                  Superseded by AAD 12H
                     95
                                                  11D ATLS
> 376
                              <sup>56</sup> AAD
> 422
                     95
                                                  11D ATLS
                                                                  Superseded by AAD 120
                              <sup>57</sup> ABAZOV
> 326
                     95
                                                  11V D0
                                                                  First generation
                              <sup>58</sup> CHATRCHYAN 11N
                     95
                                                                  Superseded by CHA-
> 339
                                                                     TRCHYAN 12AG
                              <sup>59</sup> KHACHATRY...11D CMS
                     95
> 384
                                                                  Superseded by CHA-
                                                                     TRCHYAN 12AG
                              <sup>60</sup> KHACHATRY...11E CMS
                     95
   394
                                                                  Superseded by CHA-
                                                                     TRCHYAN 12AG
                              <sup>61</sup> ABAZOV
> 247
                     95
                                                  10L
                                                        D0
                                                                  Third generation
                     95
                              <sup>62</sup> ABAZOV
                                                         D0
> 316
                                                  09
                                                                  Second generation
                              <sup>63</sup> ABAZOV
> 299
                     95
                                                  09AF D0
                                                                  Superseded by ABAZOV 11V
https://pdg.lbl.gov
                                                                 Created: 8/11/2022 09:39
                                        Page 33
```

61

		⁶⁴ AALTONEN	08P	CDF	Third generation
> 153	95	⁶⁵ AALTONEN	08Z	CDF	Third generation
> 205	95	⁶⁶ ABAZOV	08AD	D0	All generations
> 210	95	⁶⁵ ABAZOV	08AN	D0	Third generation
> 229	95	⁶⁷ ABAZOV	07 J	D0	Superseded by ABAZOV 10L
> 251	95	⁶⁸ ABAZOV	06A	D0	Superseded by ABAZOV 09
> 136	95	⁶⁹ ABAZOV	06L	D0	Superseded by ABAZOV 08AD
> 226	95	⁷⁰ ABULENCIA	06T	CDF	Second generation
> 256	95	⁷¹ ABAZOV	05н	D0	First generation
> 117	95	⁶⁶ ACOSTA	05ı	CDF	First generation
> 236	95	⁷² ACOSTA	05 P	CDF	First generation
> 99	95	⁷³ ABBIENDI	03 R	OPAL	First generation
> 100	95	⁷³ ABBIENDI	03 R	OPAL	Second generation
> 98	95	⁷³ ABBIENDI	03 R	OPAL	Third generation
> 98	95	⁷⁴ ABAZOV	02	D0	All generations
> 225	95	⁷⁵ ABAZOV	01 D	D0	First generation
> 85.8	95	⁷⁶ ABBIENDI	00M	OPAL	Superseded by ABBIENDI 03R
> 85.5	95	⁷⁶ ABBIENDI	00M	OPAL	Superseded by ABBIENDI 03R
> 82.7	95	⁷⁶ ABBIENDI	00M	OPAL	Superseded by ABBIENDI 03R
> 200	95	77 ABBOTT	00C	D0	Second generation
> 123	95	78 AFFOLDER	00K	CDF	Second generation
> 148	95	⁷⁹ AFFOLDER	00K	CDF	Third generation
> 160	95	⁸⁰ ABBOTT	99J	D0	Second generation
> 225	95	⁸¹ ABBOTT	98E	D0	First generation
> 94	95	82 ABBOTT	98J	D0	Third generation
> 202	95	83 ABE	98 S	CDF	Second generation
> 242	95	⁸⁴ GROSS-PILCH	.98		First generation
> 99	95	⁸⁵ ABE	97F	CDF	Third generation
> 213	95	⁸⁶ ABE	97X	CDF	First generation
> 45.5	95	87,88 ABREU	93 J	DLPH	$First + second \; generation$
> 44.4	95	⁸⁹ ADRIANI	93M	L3	First generation
> 44.5	95	⁸⁹ ADRIANI	93M	L3	Second generation
> 45	95	⁸⁹ DECAMP	92	ALEP	Third generation
none 8.9–22.6	95	⁹⁰ KIM	90	AMY	First generation
none 10.2-23.2	95	⁹⁰ KIM	90	AMY	Second generation
none 5-20.8	95	91 BARTEL	87 B	JADE	
none 7-20.5	95	⁹² BEHREND	86 B	CELL	

 $^{^1}$ AAD 21AG search for scalar leptoquarks decaying to te. See their Fig. 6 for exclusion limit on ${\rm B}(te)$ as function of ${\it M}_{LQ}.$

 $^{^2}$ AAD 21AG search for scalar leptoquarks decaying to $t\,\mu$. See their Fig. 6 for exclusion limit on B(t μ) as function of M_{LO} .

 $^{^3}$ AAD 21AW search for scalar leptoquarks decaying to $b\tau$. See their Fig. 9 for exclusion contour in B(b\tau)- M_{LO} plane.

 $^{^4}$ AAD 21AW search for scalar leptoquarks decaying to $t\tau.$ See their Fig. 9 for exclusion contour in ${\rm B}(t\tau)-M_{LQ}$ plane.

 $^{^5}$ AAD 21AW search for $\kappa=1$ vector leptoquarks decaying to $b\tau.$ See their Fig. 10 for exclusion contour in ${\sf B}(b\tau)-M_{LQ}$ plane and for limit on $\kappa=0$ vector leptoquarks.

⁶ AAD 21S search for scalar leptoquarks decaying to $b\nu$ in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(b\nu)=1$. For $B(b\nu)=0.05$, the limit becomes 400 GeV.

- ⁷ AAD 21T search for scalar leptoquarks decaying to $t\tau$ in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(t\tau)=1$. For $B(t\tau)=0.5$, the limit becomes 1220 GeV. See their Fig. 15b for limits on $B(t\tau)$ as a function of leptoquark mass.
- ⁸ SIRUNYAN 21J search for scalar leptoquarks decaying to t au and b
 u in pp collisions at $\sqrt{s}=13$ TeV.
- $^9\, {\rm SIRUNYAN}$ 21J search for vector leptoquarks decaying to $t\nu$ and $b\tau$ in pp collisions at $\sqrt{s}=13\,$ TeV. The limit quoted above assumes $\kappa=1.$ If we assume $\kappa=0,$ the limit becomes $M_{LO}~>1290$ GeV.
- ¹⁰ AAD 20AK search for scalar leptoquarks decaying to eq, eb, ec, μq , μb , μc . The quoted limit assumes B(eq) = 1. See their Fig. 9 for limits on B(eq), B(eb), B(ec), B(μq), B(μb), B(μc) as a function of leptoquark mass.
- ¹¹ AAD 20AK search for scalar leptoquarks decaying to eq, eb, ec, μq , μb , μc . The quoted limit assumes B(μq) = 1. See their Fig. 9 for limits on B(eq), B(eb), B(ec), B(μq), B(μb), B(μc) as a function of leptoquark mass.
- 12 AAD 20S search for scalar leptoquarks decaying to $t\nu$ in pp collisions at $\sqrt{s}=13$ TeV.
- ¹³ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,d,s,c). The limit quoted above assumes scalar leptoquark with B(νb) = 1.
- ¹⁴ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,d,s,c). The limit quoted above assumes scalar leptoquark with B(νt) = 1.
- ¹⁵ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q = u, d, s, c). The limit quoted above assumes scalar leptoquark with B(νq) = 1.
- 16 SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,~d,~s,~c). The limit quoted above assumes vector leptoquark with B($\nu\,b$) = 1 and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{LO}>1560$ GeV.
- 17 SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ (q=u,~d,~s,~c). The limit quoted above assumes vector leptoquark with B($\nu\,t$) = 1 and $\kappa=1.$ If we assume $\kappa=0$, the limit becomes $M_{LQ}>1475$ GeV.
- ¹⁸ SIRUNYAN 20A search for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$ ($q=u,\ d,\ s,\ c$). The limit quoted above assumes vector leptoquark with B(νq) = 1 and $\kappa=1$. If we assume $\kappa=0$, the limit becomes $M_{LO}>1560$ GeV.
- ¹⁹ AABOUD 19AX search for leptoquarks using eejj events in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes B(eq)=1.
- ²⁰ AABOUD 19AX search for leptoquarks using $\mu\mu jj$ events in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(\mu q)=1$.
- ²¹ AABOUD 19X search for scalar leptoquarks decaying to $t\nu$ in pp collisions at $\sqrt{s}=13$ TeV.
- ²² AABOUD 19X search for scalar leptoquarks decaying to $b\tau$ in pp collisions at $\sqrt{s}=13$ TeV.
- ²³ AABOUD 19X search for scalar leptoquarks decaying to $b\nu$ in pp collisions at $\sqrt{s}=13$ TeV.
- ²⁴ AABOUD 19X search for scalar leptoquarks decaying to $t\tau$ in pp collisions at $\sqrt{s}=13$ TeV.
- 25 SIRUNYAN 19BI search for a pair of scalar leptoquarks decaying to $\mu\mu jj$ and to $\mu\nu jj$ final states in $p\,p$ collisions at $\sqrt{s}=13$ TeV. Limits are shown as a function of β where β is the branching fraction to a muon and a quark. For $\beta=1.0$ (0.5) LQ masses up to 1530 (1285) GeV are excluded. See Fig. 9 for exclusion limits in the plane of β and LQ mass.
- ²⁶ SIRUNYAN 19BJ search for a pair of scalar leptoquarks decaying to eejj and $e\nu jj$ final states in pp collisions at $\sqrt{s}=13$ TeV. Limits are shown as a function of the branching fraction β to an electron and a quark. For $\beta=1.0$ (0.5) LQ masses up to 1435 (1270) GeV are excluded. See Fig. 9 for exclusion limits in the plane of β and LQ mass.
- ²⁷ SIRUNYAN 19Y search for a pair of third generation scalar leptoquarks, each decaying to τ and a jet. Assuming B(τ b) = 1, leptoquark masses below 1.02 TeV are excluded.
- ²⁸ SIRUNYAN 18CZ search for scalar leptoquarks decaying to τt in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes B(τt) = 1.

- ²⁹ SIRUNYAN 18EC set limits for scalar and vector leptoquarks decaying to μt , τt , and νb . The limit quoted above assumes scalar leptoquark with B(μt) = 1.
- ³⁰ SIRUNYAN 18EC set limits for scalar and vector leptoquarks decaying to μt , τt , and νb . The limit quoted above assumes vector leptoquark with all possible combinations of branching fractions to μt , τt , and νb .
- ³¹ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. The limit quoted above assumes scalar leptoquark with $B(b\nu)=1$. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1810 GeV.
- ³² SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. The limit quoted above assumes scalar leptoquark with B($q\nu$) = 1. Vector leptoquarks with $\kappa=1$ are excluded below masses of 1790 GeV.
- ³³ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. The limit quoted above assumes scalar leptoquark with B(νt) = 1. Vector leptoquarks with $\kappa = 1$ are excluded below masses of 1780 GeV.
- ³⁴ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. $\kappa=1$ and LQ $\to b\nu$ are assumed.
- ³⁵ SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. $\kappa=1$ and LQ $\rightarrow q\nu$ with q=u,d,s,c are assumed.
- 36 SIRUNYAN 18U set limits for scalar and vector leptoquarks decaying to $t\nu$, $b\nu$, and $q\nu$. $\kappa=1$ and LQ $\rightarrow~t\nu$ are assumed.
- ³⁷ KHACHATRYAN 17J search for scalar leptoquarks decaying to τb using pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes $B(\tau b)=1$.
- ³⁸ SIRUNYAN 17H search for scalar leptoquarks using $\tau \tau bb$ events in pp collisions at \sqrt{s} = 8 TeV. The limit above assumes B(τb) = 1.
- ³⁹ AAD 16G search for scalar leptoquarks using eejj events in collisions at $\sqrt{s}=8$ TeV. The limit above assumes B(eq)=1.
- ⁴⁰ AAD 16G search for scalar leptoquarks using $\mu \mu jj$ events in collisions at $\sqrt{s}=8$ TeV. The limit above assumes $B(\mu q)=1$.
- ⁴¹ AAD 16G search for scalar leptoquarks decaying to $b\nu$. The limit above assumes $B(b\nu)=1$.
- ⁴² AAD 16G search for scalar leptoquarks decaying to $t\nu$. The limit above assumes $B(t\nu)$ = 1.
- ⁴³ KHACHATRYAN 16AF search for scalar leptoquarks using eejj and $e\nu jj$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5, the limit becomes 850 GeV.
- 44 KHACHATRYAN 16AF search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 760 GeV.
- 45 KHACHATRYAN 15AJ search for scalar leptoquarks using $\tau \tau t t$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes $B(\tau t)=1$.
- ⁴⁶ KHACHATRYAN 14T search for scalar leptoquarks decaying to τb using pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes $B(\tau b)=1$. See their Fig. 5 for the exclusion limit as function of $B(\tau b)$.
- 47 SIRUNYAN 19BC search for scalar leptoquark (LQ) pair production in $p\,p$ collisions at $\sqrt{s}=13$ TeV. One LQ is assumed to decay to $\mu\,q$, while the other decays to dark matter pair and SM particles. See their Fig. 4 for limits in $M_{\rm LQ}-M_{\rm DM}$ plane.
- ⁴⁸ AAD 13AE search for scalar leptoquarks using $\tau \tau bb$ events in pp collisions at $E_{\rm cm} = 7$ TeV. The limit above assumes B(τb) = 1.
- ⁴⁹ CHATRCHYAN 13M search for scalar and vector leptoquarks decaying to τb in pp collisions at $E_{\rm cm}=7$ TeV. The limit above is for scalar leptoquarks with B(τb) = 1.
- 50 AAD 12H search for scalar leptoquarks using $e\,e\,j\,j$ and $e\,\nu\,j\,j$ events in $p\,p$ collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B $(e\,q)=1$. For B $(e\,q)=0.5$, the limit becomes 607 GeV.
- ⁵¹ AAD 120 search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 594 GeV.

- ⁵² CHATRCHYAN 12AG search for scalar leptoquarks using $e \, e \, jj$ and $e \, \nu \, jj$ events in $p \, p$ collisions at $E_{\rm cm} = 7$ TeV. The limit above assumes $B(e \, q) = 1$. For $B(e \, q) = 0.5$, the limit becomes 640 GeV.
- ⁵³ CHATRCHYAN 12AG search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the __ limit becomes 650 GeV.
- ⁵⁴ CHATRCHYAN 12BO search for scalar leptoquarks decaying to $\nu \, b$ in $p \, p$ collisions at \sqrt{s} = 7 TeV. The limit above assumes B($\nu \, b$) = 1.
- ⁵⁵ AAD 11D search for scalar leptoquarks using eejj and $e\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5, the limit becomes 319 GeV.
- ⁵⁶ AAD 11D search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes __362 GeV.
- ⁵⁷ ABAZOV 11V search for scalar leptoquarks using $e\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(eq) = 0.5.
- ⁵⁸ CHATRCHYAN 11N search for scalar leptoquarks using $e\nu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(eq) = 0.5.
- ⁵⁹ KHACHATRYAN 11D search for scalar leptoquarks using eejj events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes B(eq)=1.
- ⁶⁰ KHACHATRYAN 11E search for scalar leptoquarks using $\mu\mu jj$ events in pp collisions at $E_{\rm cm}=7$ TeV. The limit above assumes $B(\mu q)=1$.
- ⁶¹ ABAZOV 10L search for pair productions of scalar leptoquark state decaying to $\nu \, b$ in $p \, \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The limit above assumes ${\rm B}(\nu \, b) = 1$.
- ⁶² ABAZOV 09 search for scalar leptoquarks using $\mu\mu jj$ and $\mu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 270 GeV.
- ABAZOV 09AF search for scalar leptoquarks using eejj and $e\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 the bound becomes 284 GeV.
- 64 AALTONEN 08P search for vector leptoquarks using $\tau^+\tau^-b\overline{b}$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. Assuming Yang-Mills (minimal) couplings, the mass limit is >317 GeV (251 GeV) at 95% CL for B(τb) = 1.
- ⁶⁵ Search for pair production of scalar leptoquark state decaying to τb in $p\overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The limit above assumes $B(\tau b) = 1$.
- ⁶⁶ Search for scalar leptoquarks using $\nu\nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(νq) = 1.
- ⁶⁷ ABAZOV 07J search for pair productions of scalar leptoquark state decaying to νb in $p \overline{p}$ collisions at $E_{\rm cm} = 1.96$ TeV. The limit above assumes $B(\nu b) = 1$.
- ⁶⁸ ABAZOV 06A search for scalar leptoquarks using $\mu\mu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV and 1.96 TeV. The limit above assumes B(μq) = 1. For B(μq) = 0.5, the limit becomes 204 GeV.
- 69 ABAZOV 06L search for scalar leptoquarks using $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV and at 1.96 TeV. The limit above assumes B(νq) = 1.
- 70 ABULENCIA 06 T search for scalar leptoquarks using $\mu\mu jj$, $\mu\nu jj$, and $\nu\nu jj$ events in $^{}p\bar{p}$ collisions at $^{}E_{cm}=1.96$ TeV. The quoted limit assumes $^{}B(\mu q)=1$. For $^{}B(\mu q)=0.5$ or $^{}0.1$, the bound becomes 208 GeV or 143 GeV, respectively. See their Fig. 4 for the exclusion limit as a function of $^{}B(\mu q)$.
- ⁷¹ ABAZOV 05H search for scalar leptoquarks using eejj and $e\nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.8$ TeV and 1.96 TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 the bound becomes 234 GeV.
- 72 ACOSTA 05P search for scalar leptoquarks using eejj, $e\nu jj$ events in $\overline{p}p$ collisions at $E_{\rm cm}=1.96$ TeV. The limit above assumes B(eq) = 1. For B(eq) = 0.5 and 0.1, the bound becomes 205 GeV and 145 GeV, respectively.
- 73 ABBIENDI 03R search for scalar/vector leptoquarks in e^+e^- collisions at $\sqrt{s}=189$ –209 GeV. The quoted limits are for charge -4/3 isospin 0 scalar-leptoquark with B(ℓq) = 1. See their table 12 for other cases.

- ⁷⁴ ABAZOV 02 search for scalar leptoquarks using $\nu\nu jj$ events in $\overline{p}p$ collisions at $E_{cm}{=}1.8$ TeV. The bound holds for all leptoquark generations. Vector leptoquarks are likewise constrained to lie above 200 GeV.
- 75 ABAZOV 01D search for scalar leptoquarks using $e\nu jj$, eejj, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 and 0, the bound becomes 204 and 79 GeV, respectively. Bounds for vector leptoquarks are also given. Supersedes ABBOTT 98E.
- ⁷⁶ ABBIENDI 00M search for scalar/vector leptoquarks in e^+e^- collisions at \sqrt{s} =183 GeV. The quoted limits are for charge -4/3 isospin 0 scalar-leptoquarks with B(ℓq)=1. See their Table 8 and Figs. 6–9 for other cases.
- ⁷⁷ ABBOTT 00C search for scalar leptoquarks using $\mu\mu jj$, $\mu\nu jj$, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit above assumes B(μq)=1. For B(μq)=0.5 and 0, the bound becomes 180 and 79 GeV respectively. Bounds for vector leptoquarks are also given.
- ⁷⁸ AFFOLDER 00K search for scalar leptoquark using $\nu\nu cc$ events in $p\overline{p}$ collisions at $E_{\rm cm} = 1.8$ TeV. The quoted limit assumes B(νc)=1. Bounds for vector leptoquarks are also given.
- 79 AFFOLDER 00K search for scalar leptoquark using $\nu\nu\,b\,b$ events in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. The quoted limit assumes B($\nu\,b$)=1. Bounds for vector leptoquarks are also given.
- ⁸⁰ ABBOTT 99J search for leptoquarks using $\mu\nu jj$ events in $p\overline{p}$ collisions at $E_{cm}=1.8$ TeV. The quoted limit is for a scalar leptoquark with $B(\mu q)=B(\nu q)=0.5$. Limits on vector leptoquarks range from 240 to 290 GeV.
- ⁸¹ ABBOTT 98E search for scalar leptoquarks using $e\nu jj$, eejj, and $\nu\nu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit above assumes B(eq)=1. For B(eq)=0.5 and 0, the bound becomes 204 and 79 GeV, respectively.
- ⁸² ABBOTT 98J search for charge -1/3 third generation scalar and vector leptoquarks in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The quoted limit is for scalar leptoquark with B(νb)=1.
- ABE 98S search for scalar leptoquarks using $\mu\mu jj$ events in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The limit is for B(μq)= 1. For B(μq)=B(νq)=0.5, the limit is > 160 GeV.
- 84 GROSS-PILCHER 98 is the combined limit of the CDF and DØ Collaborations as determined by a joint CDF/DØ working group and reported in this FNAL Technical Memo. Original data published in ABE 97x and ABBOTT 98E.
- ⁸⁵ ABE 97F search for third generation scalar and vector leptoquarks in $p\overline{p}$ collisions at $E_{\rm cm}=1.8$ TeV. The quoted limit is for scalar leptoquark with B $(\tau\,b)=1$.
- ⁸⁶ ABE 97X search for scalar leptoquarks using eejj events in $p\overline{p}$ collisions at $E_{cm}=1.8$ TeV. The limit is for B(eq)=1.
- ⁸⁷ Limit is for charge -1/3 isospin-0 leptoquark with $B(\ell q) = 2/3$.
- ⁸⁸ First and second generation leptoquarks are assumed to be degenerate. The limit is slightly lower for each generation.
- ⁸⁹ Limits are for charge -1/3, isospin-0 scalar leptoquarks decaying to $\ell^- q$ or νq with any branching ratio. See paper for limits for other charge-isospin assignments of leptoquarks.
- ⁹⁰ KIM 90 assume pair production of charge 2/3 scalar-leptoquark via photon exchange. The decay of the first (second) generation leptoquark is assumed to be any mixture of de^+ and $u\overline{\nu}$ ($s\mu^+$ and $c\overline{\nu}$). See paper for limits for specific branching ratios.
- ⁹¹ BARTEL 87B limit is valid when a pair of charge 2/3 spinless leptoquarks X is produced with point coupling, and when they decay under the constraint B(X $\to c \overline{\nu}_{\mu}$) + B(X $\to s \mu^+$) = 1.
- ⁹² BEHREND 86B assumed that a charge 2/3 spinless leptoquark, χ , decays either into $s\mu^+$ or $c\overline{\nu}$: B($\chi \to s\mu^+$) + B($\chi \to c\overline{\nu}$) = 1.

MASS LIMITS for Leptoquarks from Single Production

These limits depend on the q- ℓ -leptoquark coupling g_{LQ} . It is often assumed that $g_{LQ}^2/4\pi=1/137$. Limits shown are for a scalar, weak isoscalar, charge -1/3 leptoquark.

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
> 550	95	¹ SIRUNYAN 21J CMS Third generation
none 150-740	95	² SIRUNYAN 18BJ CMS Third generation
>1755	95	³ KHACHATRY16AG CMS First generation
> 660	95	⁴ KHACHATRY16AG CMS Second generation
> 304	95	⁵ ABRAMOWICZ12A ZEUS First generation
> 73	95	⁶ ABREU 93J DLPH Second generation

• • We do not use the following data for averages, fits, limits, etc.

		⁷ TUMASYAN	21 D	CMS	First generation
		⁸ DEY	16	ICCB	uq ightarrow LQ $ ightarrow uq$
		⁹ AARON	11A	H1	Lepton-flavor violation
> 300	95	¹⁰ AARON	11 B	H1	First generation
		¹¹ ABAZOV	07E	D0	Second generation
> 295	95	¹² AKTAS	05 B	H1	First generation
		¹³ CHEKANOV	05A	ZEUS	Lepton-flavor violation
> 298	95	¹⁴ CHEKANOV	03 B	ZEUS	First generation
> 197	95	¹⁵ ABBIENDI	02 B	OPAL	First generation
		¹⁶ CHEKANOV	02	ZEUS	Repl. by CHEKANOV 05A
> 290	95	¹⁷ ADLOFF	01 C	H1	First generation
> 204	95	¹⁸ BREITWEG	01	ZEUS	First generation
		¹⁹ BREITWEG	00E	ZEUS	First generation
> 161	95	²⁰ ABREU	99G	DLPH	First generation
> 200	95	²¹ ADLOFF	99	H1	First generation
		²² DERRICK	97	ZEUS	Lepton-flavor violation
> 168	95	²³ DERRICK	93	ZEUS	First generation

 $^{^1}$ SIRUNYAN 21J search for single production of charge -1/3 scalar leptoquarks decaying to $t\tau^-$ and $b\nu$, and charge 2/3 vector leptoquarks decaying to $t\nu$ and $b\tau^+$ in pp collisions at $\sqrt{s}=13$ TeV. The limit quoted above assumes a scalar leptoquark with ${\rm B}(t\tau)={\rm B}(b\nu)=0.5$ and the leptoquark coupling strength $\lambda=1.5$. The limit becomes $M_{LQ}>750$ GeV for $\lambda=2.5$.

² SIRUNYAN 18BJ search for single production of charge 2/3 scalar leptoquarks decaying to τb in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes B(τb) =1 and the leptoquark coupling strength $\lambda=1$.

³ KHACHATRYAN 16AG search for single production of charge $\pm 1/3$ scalar leptoquarks using $e\,e\,j$ events in $p\,p$ collisions at $\sqrt{s}=8$ TeV. The limit above assumes $\mathsf{B}(e\,q)=1$ and the leptoquark coupling strength $\lambda=1$.

⁴ KHACHATRYAN 16AG search for single production of charge $\pm 1/3$ scalar leptoquarks using $\mu\mu j$ events in pp collisions at $\sqrt{s}=8$ TeV. The limit above assumes $\mathrm{B}(\mu q)=1$ and the leptoquark coupling strength $\lambda=1$.

 $^{^5}$ ABRAMOWICZ 12A limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Figs. 12–17 and Table 4 for states with different quantum numbers.

⁶ Limit from single production in Z decay. The limit is for a leptoquark coupling of electromagnetic strength and assumes $B(\ell q) = 2/3$. The limit is 77 GeV if first and second leptoquarks are degenerate.

⁷TUMASYAN 21D search for energetic jets $+ \not\!\!\!E_T$ events in pp collisions at $\sqrt{s}=13$ TeV. The branching fraction for the decay of the leptoquark into an electron neutrino and up quark is assumed to be 100% ($\beta=0$). See their Fig. 12 for exclusion limits in mass-coupling plane.

- ⁸ DEY 16 use the 2010-2012 IceCube PeV energy data set to constrain the leptoquark production cross section through the $\nu q \to LQ \to \nu q$ process. See their Figure 4 for the exclusion limit in the mass-coupling plane.
- ⁹ AARON 11A search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 2–3 and Tables 1–4 for detailed limits.
- ¹⁰ The quoted limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Figs. 3–5 for limits on states with different quantum numbers.
- ¹¹ ABAZOV 07E search for leptoquark single production through qg fusion process in $p\overline{p}$ collisions. See their Fig. 4 for exclusion plot in mass-coupling plane.
- 12 AKTAS 05B limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Fig. 3 for limits on states with different quantum numbers.
- ¹³ CHEKANOV 05 search for various leptoquarks with lepton-flavor violating couplings. See their Figs.6–10 and Tables 1–8 for detailed limits.
- 14 CHEKANOV 03B limit is for a scalar, weak isoscalar, charge -1/3 leptoquark coupled with e_R . See their Figs. 11–12 and Table 5 for limits on states with different quantum numbers.
- ¹⁵ For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 4 and Fig. 5.
- 16 CHEKANOV 02 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 6–7 and Tables 5–6 for detailed limits.
- ¹⁷ For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 3.
- $^{18}\,\mathrm{See}$ their Fig. 14 for limits in the mass-coupling plane.
- ¹⁹ BREITWEG 00E search for F=0 leptoquarks in e^+p collisions. For limits in mass-coupling plane, see their Fig. 11.
- ²⁰ ABREU 99G limit obtained from process $e\gamma \to LQ+q$. For limits on vector and scalar states with different quantum numbers and the limits in the coupling-mass plane, see their Fig. 4 and Table 2.
- ²¹ For limits on states with different quantum numbers and the limits in the mass-coupling plane, see their Fig. 13 and Fig. 14. ADLOFF 99 also search for leptoquarks with lepton-flavor violating couplings. ADLOFF 99 supersedes AID 96B.
- ²² DERRICK 97 search for various leptoquarks with lepton-flavor violating couplings. See their Figs. 5–8 and Table 1 for detailed limits.
- ²³ DERRICK 93 search for single leptoquark production in ep collisions with the decay eq and νq . The limit is for leptoquark coupling of electromagnetic strength and assumes $B(eq) = B(\nu q) = 1/2$. The limit for B(eq) = 1 is 176 GeV. For limits on states with different quantum numbers, see their Table 3.

Indirect Limits for Leptoquarks

VALUE (TeV)	CL%	DOCUMENT ID		TECN	COMMENT
• • • We do	not use	the following data	for av	erages, f	ïts, limits, etc. • • •
> 3.1	95	² AEBISCHER ³ DEPPISCH	20 20 Z19	RVUE RVUE ZEUS	First generation B decays $K \rightarrow \pi \nu \nu$ First generation τ , μ , e , K
		6 ZHANG 7 BARRANCO 8 KUMAR	18A 16	RVUE RVUE	D decays D decays
> 14	95	9 BESSAA 10 SAHOO 11 SAKAKI 12 KOSNIK	15 15A	RVUE RVUE	neutral K mixing, rare K decays $q\overline{q} \rightarrow e^+e^ B_{s,d} \rightarrow \mu^+\mu^ B \rightarrow D^{(*)}\tau\overline{\nu}, B \rightarrow X_{S}\nu\overline{\nu}$ $b \rightarrow s\ell^+\ell^-$

>	2.5	95	13 AARON		H1	First generation
			14 DORSNER	11	RVUE	scalar, weak singlet, charge 4/3
			¹⁵ AKTAS	07A	H1	Lepton-flavor violation
>	0.49	95	¹⁶ SCHAEL	07A	ALEP	$e^+e^- o q\overline{q}$
			¹⁷ SMIRNOV	07	RVUE	$K ightarrow \ e \mu, B ightarrow \ e au$
			¹⁸ CHEKANOV	05A	ZEUS	Lepton-flavor violation
>	1.7	96	¹⁹ ADLOFF	03	H1	First generation
>	46	90	²⁰ CHANG	03	BELL	Pati-Salam type
			²¹ CHEKANOV	02	ZEUS	Repl. by CHEKANOV 05A
>	1.7	95	²² CHEUNG	01 B	RVUE	First generation
>	0.39	95	²³ ACCIARRI	00 P	L3	$e^+e^- o q q$
>	1.5	95	²⁴ ADLOFF	00	H1	First generation
>	0.2	95	²⁵ BARATE	001	ALEP	Repl. by SCHAEL 07A
			²⁶ BARGER	00	RVUE	Cs
			²⁷ GABRIELLI	00	RVUE	Lepton flavor violation
>	0.74	95	²⁸ ZARNECKI	00	RVUE	S_1 leptoquark
			²⁹ ABBIENDI	99	OPAL	-
>	19.3	95	³⁰ ABE	98V	CDF	$B_{m s} ightarrow e^{\pm} \mu^{\mp}$, Pati-Salam type
			³¹ ACCIARRI	98J	L3	$e^+e^- o q\overline{q}$
			³² ACKERSTAFF	98V	OPAL	$e^+e^- ightarrow q\overline{q},e^+e^- ightarrowb\overline{b}$
>	0.76	95	³³ DEANDREA	97	RVUE	\widetilde{R}_2 leptoquark
			³⁴ DERRICK	97	ZEUS	Lepton-flavor violation
			³⁵ GROSSMAN	97	RVUE	$B \rightarrow \tau^+ \tau^-(X)$
			³⁶ JADACH	97	RVUE	$e^+e^- \rightarrow q \overline{q}$
>1	200		³⁷ KUZNETSOV	95 B	RVUE	• •
			³⁸ MIZUKOSHI	95	RVUE	Third generation scalar leptoquark
>	0.3	95	³⁹ BHATTACH	94	RVUE	Spin-0 leptoquark coupled to $\overline{e}_R t_L$
			⁴⁰ DAVIDSON	94	RVUE	K L
>	18		⁴¹ KUZNETSOV	94	RVUE	Pati-Salam type
>	0.43	95	⁴² LEURER	94	RVUE	First generation spin-1 leptoquark
>	0.44	95	⁴² LEURER	94 B	RVUE	First generation spin-0 leptoquark
			⁴³ MAHANTA	94	RVUE	P and T violation
>	1		⁴⁴ SHANKER	82	RVUE	Nonchiral spin-0 leptoquark
>	125		⁴⁴ SHANKER	82	RVUE	Nonchiral spin-1 leptoquark

 $^{^1}$ CRIVELLIN 21A set limits on coupling strengths of scalar and vector leptoquarks using $K\to~\pi\nu\nu,~K\to~\pi\,e^+\,e^-,~K^0-\overline{K}^0$ and $D^0-\overline{D}^0$ mixings, and weak neutral current measurements. See their Fig. 2 and Fig. 3 for the limits in mass-coupling plane.

² AEBISCHER 20 explain the B decay anomalies using four-fermion operator Wilson coefficients. See their Table 1. These Wilson coefficients may be generated by a U_1 vector leptoquark with U_1 transforming as $(3,1)_{2/3}$ under the SM gauge group. See their Figures 6, 7, 8 for the regions of the LQ parameter space which explains the B anomalies and avoids the indirect low energy constraints.

³ DEPPISCH 20 limits on the lepton-number-violating higher-dimensional-operators are derived from $K \to \pi \nu \nu$ in the standard model effective field theory. These higher-dimensional-operators may be induced from leptoquark-exchange diagrams.

dimensional-operators may be induced from leptoquark-exchange diagrams. 4 ABRAMOWICZ 19 obtain a limit on $\lambda/M_{LQ}>1.16~{\rm TeV}^{-1}$ for weak isotriplet spin-0 leptoquark S_1^L . We obtain the limit quoted above by converting the limit on λ/M_{LQ} for S_1^L assuming $\lambda=\sqrt{4\pi}.$ See their Table 5 for the limits of leptoquarks with different quantum numbers. These limits are derived from bounds of eq contact interactions.

⁵ MANDAL 19 give bounds on leptoquarks from au-decays, leptonic dipole moments, lepton-flavor-violating processes, and K decays.

- ⁶ ZHANG 18A give bounds on leptoquark induced four-fermion interactions from $D \to K\ell\nu$. The authors inform us that the shape parameter of the vector form factor in both the abstract and the conclusions of ZHANG 18A should be $r_{+1}=2.16\pm0.07$ rather than ±0.007 . The numbers listed in their Table 7 are correct.
- ⁷ BARRANCO 16 give bounds on leptoquark induced four-fermion interactions from $D \to K\ell\nu$ and $D_{\rm S} \to \ell\nu$.
- ⁸ KUMAR 16 gives bound on SU(2) singlet scalar leptoquark with chrge -1/3 from $K^0-\overline{K}^0$ mixing, $K\to \pi\nu\overline{\nu}$, $K^0_L\to \mu^+\mu^-$, and $K^0_L\to \mu^\pm e^\mp$ decays.
- ⁹ BESSAA 15 obtain limit on leptoquark induced four-fermion interactions from the ATLAS and CMS limit on the $\overline{q}q\overline{e}e$ contact interactions.
- ¹⁰ SAHOO 15A obtain limit on leptoquark induced four-fermion interactions from $B_{s,d} \to \mu^+\mu^-$ for $\lambda \simeq O(1)$.
- ¹¹ SAKAKI 13 explain the $B \to D^{(*)} \tau \overline{\nu}$ anomaly using Wilson coefficients of leptoquark-induced four-fermion operators.
- ¹² KOSNIK 12 obtains limits on leptoquark induced four-fermion interactions from $b \rightarrow s \ell^+ \ell^-$ decays.
- ¹³ AARON 11C limit is for weak isotriplet spin-0 leptoquark at strong coupling $\lambda = \sqrt{4\pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds of eq contact intereractions.
- ¹⁴ DORSNER 11 give bounds on scalar, weak singlet, charge 4/3 leptoquark from K, B, τ decays, meson mixings, LFV, g-2 and $Z \rightarrow b\overline{b}$.
- ¹⁵ AKTAS 07A search for lepton-flavor violation in *e p* collision. See their Tables 4–7 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
- 16 SCHAEL 07A limit is for the weak-isoscalar spin-0 left-handed leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table 35.
- ¹⁷ SMIRNOV 07 obtains mass limits for the vector and scalar chiral leptoquark states from $K \to e\mu$, $B \to e\tau$ decays.
- ¹⁸ CHEKANOV 05 search for various leptoquarks with lepton-flavor violating couplings. See their Figs.6–10 and Tables 1–8 for detailed limits.
- 19 ADLOFF 03 limit is for the weak isotriplet spin-0 leptoquark at strong coupling $\lambda{=}\sqrt{4\pi}.$ For the limits of leptoquarks with different quantum numbers, see their Table 3. Limits are derived from bounds on $e^{\pm}\,q$ contact interactions.
- $^{20}\,\text{The bound}$ is derived from B(B0 $^{\circ}\rightarrow~\text{e}^{\pm}\,\mu^{\mp})<~1.7\times10^{-7}.$
- 21 CHEKANOV 02 search for lepton-flavor violation in ep collisions. See their Tables 1–4 for limits on lepton-flavor violating and four-fermion interactions induced by various leptoquarks.
- 22 CHEUNG 01B quoted limit is for a scalar, weak isoscalar, charge -1/3 leptoquark with a coupling of electromagnetic strength. The limit is derived from bounds on contact interactions in a global electroweak analysis. For the limits of leptoquarks with different quantum numbers, see Table 5.
- ²³ ACCIARRI 00P limit is for the weak isoscalar spin-0 leptoquark with the coupling of electromagnetic strength. For the limits of leptoquarks with different quantum numbers, see their Table 4.
- 24 ADLOFF 00 limit is for the weak isotriplet spin-0 leptoquark at strong coupling, $\lambda = \sqrt{4\pi}$. For the limits of leptoquarks with different quantum numbers, see their Table 2. ADLOFF 00 limits are from the Q^2 spectrum measurement of $e^+p \to e^+X$.
- ²⁵ BARATE 00I search for deviations in cross section and jet-charge asymmetry in $e^+e^- \rightarrow \overline{q}\,q$ due to *t*-channel exchange of a leptoquark at \sqrt{s} =130 to 183 GeV. Limits for other scalar and vector leptoquarks are also given in their Table 22.
- 26 BARGER 00 explain the deviation of atomic parity violation in cesium atoms from prediction is explained by scalar leptoquark exchange.
- ²⁷ GABRIELLI 00 calculate various process with lepton flavor violation in leptoquark models.

- ²⁸ ZARNECKI 00 limit is derived from data of HERA, LEP, and Tevatron and from various low-energy data including atomic parity violation. Leptoquark coupling with electromagnetic strength is assumed.
- 29 ABBIENDI 99 limits are from $e^+e^ightarrow~q\,\overline{q}$ cross section at 130–136, 161–172, 183
- GeV. See their Fig. 8 and Fig. 9 for limits in mass-coupling plane. 30 ABE 98V quoted limit is from B($B_s \rightarrow e^{\pm} \mu^{\mp}) < 8.2 \times 10^{-6}$. ABE 98V also obtain a similar limit on $M_{LO}>$ 20.4 TeV from B($B_d
 ightarrow e^{\pm}\mu^{\mp}$)< 4.5 imes 10 $^{-6}$. Both bounds assume the non-canonical association of the b quark with electrons or muons under SU(4).
- 31 ACCIARRI 98J limit is from $e^+e^ightarrow q\,\overline{q}$ cross section at $\sqrt{s}=$ 130–172 GeV which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 4 and Fig. 5 for limits in the mass-coupling plane.
- 32 ACKERSTAFF 98V limits are from $e^+e^- o q\,\overline{q}$ and $e^+e^- o b\,\overline{b}$ cross sections at \sqrt{s} = 130-172 GeV, which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 21 and Fig. 22 for limits of leptoquarks in mass-coupling plane.
- 33 DEANDREA 97 limit is for \tilde{R}_2 leptoquark obtained from atomic parity violation (APV). The coupling of leptoquark is assumed to be electromagnetic strength. See Table 2 for limits of the four-fermion interactions induced by various scalar leptoquark exchange. DEANDREA 97 combines APV limit and limits from Tevatron and HERA. See Fig. 1-4 for combined limits of leptoquark in mass-coupling plane.
- 34 DERRICK 97 search for lepton-flavor violation in ep collision. See their Tables 2–5 for limits on lepton-flavor violating four-fermion interactions induced by various leptoquarks.
- ³⁵ GROSSMAN 97 estimate the upper bounds on the branching fraction $B \to \tau^+ \tau^-(X)$ from the absence of the B decay with large missing energy. These bounds can be used to constrain leptoquark induced four-fermion interactions.
- 36 JADACH 97 limit is from $e^+e^ightarrow~q\,\overline{q}$ cross section at \sqrt{s} =172.3 GeV which can be affected by the t- and u-channel exchanges of leptoquarks. See their Fig. 1 for limits on vector leptoquarks in mass-coupling plane.
- 37 KUZNETSOV 95B use π , K, B, au decays and μe conversion and give a list of bounds on the leptoquark mass and the fermion mixing matrix in the Pati-Salam model. The quoted limit is from $\mathit{K}_{\mathit{L}} \to \ \mu \mathit{e}$ decay assuming zero mixing.
- 38 MIZUKOSHI 95 calculate the one-loop radiative correction to the Z-physics parameters in various scalar leptoquark models. See their Fig. 4 for the exclusion plot of third generation leptoquark models in mass-coupling plane.
- $^{
 m 39}$ BHATTACHARYYA 94 limit is from one-loop radiative correction to the leptonic decay width of the Z. m_H =250 GeV, $\alpha_s(m_Z)$ =0.12, m_t =180 GeV, and the electroweak strength of leptoquark coupling are assumed. For leptoquark coupled to $\overline{e}_L t_R$, $\overline{\mu} t$, and $\overline{\tau}t$, see Fig. 2 in BHATTACHARYYA 94B erratum and Fig. 3.
- $^{
 m 40}$ DAVIDSON 94 gives an extensive list of the bounds on leptoquark-induced four-fermion interactions from π , K, D, B, μ , τ decays and meson mixings, etc. See Table 15 of DAVIDSON 94 for detail.
- 41 KUZNETSOV 94 gives mixing independent bound of the Pati-Salam leptoquark from the cosmological limit on $\pi^0 \to \overline{\nu}\nu$.
- ⁴² LEURER 94, LEURER 94B limits are obtained from atomic parity violation and apply to any chiral leptoquark which couples to the first generation with electromagnetic strength. For a nonchiral leptoquark, universality in $\pi_{\ell 2}$ decay provides a much more stringent
- $^{
 m 43}$ MAHANTA 94 gives bounds of P- and T-violating scalar-leptoquark couplings from atomic and molecular experiments.
- 44 From $(\pi o e
 u)/(\pi o \mu
 u)$ ratio. SHANKER 82 assumes the leptoquark induced four-fermion coupling $4g^2/M^2$ ($\overline{\nu}_{eL}\ u_R$) ($\overline{d}_L e_R$)with $g{=}0.004$ for spin-0 leptoquark and g^2/M^2 ($\overline{\nu}_{eL}\ \gamma_\mu u_L$) ($\overline{d}_R\ \gamma^\mu e_R$) with $g{\simeq}$ 0.6 for spin-1 leptoquark.

MASS LIMITS for Diquarks

VALUE (GeV)	CL%	DOCUMENT ID TECN COMMENT
>7200 (CL = 95%)	OUR LIN	AIT
none 600-7200	95	1 SIRUNYAN 1880 CMS E_6 diquark
none 600-6900	95	2 KHACHATRY17W CMS E_6 diquark
none 1500-6000	95	³ КНАСНАТRY16к CMS <i>E</i> ₆ diquark
none 500-1600	95	⁴ KHACHATRY16L CMS <i>E</i> ₆ diquark
none 1200-4700	95	⁵ KHACHATRY15V CMS <i>E</i> ₆ diquark
● ● We do not use	the follo	wing data for averages, fits, limits, etc. • • •
>3750	95	6 CHATRCHYAN 13A CMS E_6 diquark
none 1000-4280	95	⁷ CHATRCHYAN 13AS CMS Superseded by KHACHA-
>3520	95	TRYAN 15v 8 CHATRCHYAN 11y CMS Superseded by CHA- TRCHYAN 13A
none 970–1080, 1450–1600	95	9 KHACHATRY10 CMS Superseded by CHA- TRCHYAN 13A
none 290–630	95	10 AALTONEN 09AC CDF E_6 diquark
none 290-420	95	11 ABE 97G CDF E_6 diquark
none 15-31.7	95	¹² ABREU 940 DLPH SÚSY <i>E</i> ₆ diquark

 $^{^{1}}$ SIRUNYAN 18BO search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ $_{-}$ TeV.

MASS LIMITS for g_A (axigluon) and Other Color-Octet Gauge Bosons

Axigluons are massive color-octet gauge bosons in chiral color models and have axial-vector coupling to quarks with the same coupling strength as gluons.

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
>6600 (CL = 95%) OUR LIN	ИIT		
none 1800-6600	95		CMS	$pp ightarrow g_{A}X$, $g_{A} ightarrow 2j$
none 600-6100	95	² SIRUNYAN 18BC		$pp \rightarrow g_A X, g_A \rightarrow 2j$
none 600-5500	95	³ KHACHATRY17W		$pp ightarrow g_A X, g_A ightarrow 2j$
none 1500-5100	95	⁴ KHACHATRY16K		$pp ightarrow g_A X, g_A ightarrow 2j$
none 500-1600	95	⁵ KHACHATRY16L		$pp \rightarrow g_A X, g_A \rightarrow 2j$
none 1300-3600	95	⁶ KHACHATRY15v	CMS	$pp \rightarrow g_A X, g_A \rightarrow 2j$
https://pdg.lbl.g	ov	Page 44	Cr	reated: 8/11/2022 09:39

² KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

³ KHACHATRYAN 16K search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

⁴ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at \sqrt{s} = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.

⁵ KHACHATRYAN 15V search for resonances decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV.

⁶ CHATRCHYAN 13A search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 7 TeV.

⁷ CHATRCHYAN 13AS search for new resonance decaying to dijets in pp collisions at \sqrt{s} z=8 TeV.

⁸CHATRCHYAN 11Y search for new resonance decaying to dijets in pp collisions at $\sqrt{s} = 7$ TeV.

 $[\]sqrt{s}=7\,{\rm TeV}.$ $^9\,{\rm KHACHATRYAN}$ 10 search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=7\,{\rm TeV}.$

 $^{^{10}\,\}mbox{\begin{tabular}{l}\end{tabular}}$ AALTONEN 09AC search for new narrow resonance decaying to dijets.

 $^{^{11}}$ ABE 97G search for new particle decaying to dijets.

¹² ABREU 940 limit is from $e^+e^- \to \overline{cs}cs$. Range extends up to 43 GeV if diquarks are degenerate in mass.

• • • We do not use the following data for averages, fits, limits, etc. • • •

		7 KHACHATRY17Y CMS $pp ightarrow g_{A}g_{A} ightarrow 8j$
		⁸ AAD 16W ATLS $pp \rightarrow g_A X$, $g_A \rightarrow$
		$b\overline{b}b\overline{b}$
>2800	95	9 KHACHATRY16E CMS $pp \rightarrow g_{KK} X, g_{KK} \rightarrow$
		10 KHACHATRY15AV CMS $pp ightarrow \Theta^0 \Theta^0 ightarrow b \overline{b} Zg$
		11
		$\sigma \rightarrow 2i$
>3360	95	12 CHATRCHYAN 13A CMS $pp ightarrow g_A$ X, $g_A ightarrow 2j$
none 1000-3270	95	¹³ CHATRCHYAN 13AS CMS Superseded by KHACHA-
none 250-740	95	TRYAN 15V 14 CHATRCHYAN 13AU CMS $pp o 2g_A X, g_A o 2j$
		4F
> 775	95	16 CA CA
>2470	95	¹⁶ CHATRCHYAN 11Y CMS Superseded by CHA- TRCHYAN 13A
		17 AALTONEN 10L CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow t\overline{t}$
none 1470-1520	95	¹⁸ KHACHATRY10 CMS Superseded by CHA-
262 1252	0.5	TRCHYAN 13A
none 260–1250	95	19 AALTONEN 09AC CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
> 910	95	²⁰ CHOUDHURY 07 RVUE $p\overline{p} \rightarrow t\overline{t}X$
> 365	95	21 DONCHESKI 98 RVUE $\Gamma(Z \rightarrow \text{hadron})$
none 200-980	95	22 ABE 97G CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
none 200–870	95	23 ABE 95N CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow q\overline{q}$
none 240–640	95	24 ABE 93G CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
> 50	95	²⁵ CUYPERS 91 RVUE $\sigma(e^+e^- \rightarrow hadrons)$
none 120-210	95	26 ABE 90H CDF $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
> 29		27 ROBINETT 89 THEO Partial-wave unitarity
none 150-310	95	²⁸ ALBAJAR 88B UA1 $p\overline{p} \rightarrow g_A X, g_A \rightarrow 2j$
> 20		BERGSTROM 88 RVUE $p\overline{p} ightarrow \Upsilon X$ via $g_{A}g$
> 9		29 CUYPERS 88 RVUE Υ decay
> 25		30 DONCHESKI 88B RVUE Υ decay

 $^{^{1}}$ SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV.

 $^{^2}$ SIRUNYAN 18BO search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

 $^{^3}$ KHACHATRYAN 17W search for resonances decaying to dijets in pp collisions at $\sqrt{s}=13$ TeV.

⁴ KHACHATRYAN 16K search for resonances decaying to dijets in pp collisions at $\sqrt{s}=$ _13 TeV.

⁵ KHACHATRYAN 16L search for resonances decaying to dijets in pp collisions at \sqrt{s} = 8 TeV with the data scouting technique, increasing the sensitivity to the low mass resonances.

⁶ KHACHATRYAN 15V search for resonances decaying to dijets in pp collisions at $\sqrt{s}=8$ TeV.

⁷ KHACHATRYAN 17Y search for pair production of color-octet gauge boson g_A each decaying to 4j in pp collisions at $\sqrt{s}=8$ TeV.

⁸ AAD 16W search for a new resonance decaying to a pair of b and B_H in pp collisions at $\sqrt{s}=8$ TeV. The vector-like quark B_H is assumed to decay to bH. See their Fig. 3 and Fig. 4 for limits on $\sigma \cdot B$.

 $^{^9}$ KHACHATRYAN 16E search for KK gluon decaying to $t\overline{t}$ in pp collisions at $\sqrt{s}=8$ TeV.

¹⁰ KHACHATRYAN 15AV search for pair productions of neutral color-octet weak-triplet scalar particles (Θ^0), decaying to $b\overline{b}$, Zg or γg , in pp collisions at $\sqrt{s}=8$ TeV. The Θ^0 particle is often predicted in coloron (G', color-octet gauge boson) models and appear

- in the pp collisions through $G' \to \Theta^0 \Theta^0$ decays. Assuming $B(\Theta^0 \to b \, \overline{b}) = 0.5$, they give limits $m_{\Theta^0} > 623$ GeV (426 GeV) for $m_{G'} = 2.3$ m_{Θ^0} ($m_{G'} = 5$ m_{Θ^0}).
- ¹¹ AALTONEN 13R search for new resonance decaying to $\sigma\sigma$, with hypothetical strongly interacting σ particle subsequently decaying to 2 jets, in $p\overline{p}$ collisions at $\sqrt{s}=1.96$ TeV, using data corresponding to an integrated luminosity of 6.6 fb⁻¹. For 50 GeV $< m_{\sigma} < m_{g_A}/2$, axigluons in mass range 150–400 GeV are excluded.
- ¹² CHATRCHYAN 13A search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 7 TeV.
- ¹³ CHATRCHYAN 13AS search for new resonance decaying to dijets in pp collisions at \sqrt{s} = 8 TeV.
- ¹⁴ CHATRCHYAN 13AU search for the pair produced color-octet vector bosons decaying to $q\overline{q}$ pairs in pp collisions. The quoted limit is for B($g_A \rightarrow q\overline{q}$) = 1.
- ¹⁵ ABAZOV 12R search for massive color octet vector particle decaying to $t\bar{t}$. The quoted limit assumes g_A couplings with light quarks are suppressed by 0.2.
- 16 CHATRCHYAN 11Y search for new resonance decaying to dijets in pp collisions at $\sqrt{s}=7\,\text{TeV}.$
- 17 AALTONEN 10L search for massive color octet non-chiral vector particle decaying into $t\overline{t}$ pair with mass in the range 400 GeV < M < 800 GeV. See their Fig. 6 for limit in the mass-coupling plane.
- ¹⁸ KHACHATRYAN 10 search for new resonance decaying to dijets in pp collisions at $\sqrt{s} = 7$ TeV.
- 19 AALTONEN 09AC search for new narrow resonance decaying to dijets.
- 20 CHOUDHURY 07 limit is from the $t\bar{t}$ production cross section measured at CDF.
- ²¹ DONCHESKI 98 compare α_s derived from low-energy data and that from $\Gamma(Z \to \text{hadrons})/\Gamma(Z \to \text{leptons})$.
- ²² ABE 97G search for new particle decaying to dijets.
- 23 ABE 95N assume axigluons decaying to quarks in the Standard Model only.
- ²⁴ ABE 93G assume $\Gamma(g_A) = N\alpha_S m_{g_A}/6$ with N=10.
- 25 CUYPERS 91 compare $\alpha_{\rm S}$ measured in \varUpsilon decay and that from R at PEP/PETRA energies.
- ²⁶ ABE 90H assumes $\Gamma(g_A) = N\alpha_S m_{g_A}/6$ with N=5 ($\Gamma(g_A)=0.09m_{g_A}$). For N=10, the excluded region is reduced to 120–150 GeV.
- ²⁷ ROBINETT 89 result demands partial-wave unitarity of J=0 $t\overline{t} \to t\overline{t}$ scattering amplitude and derives a limit $m_{g_A}>0.5$ m_t . Assumes $m_t>56$ GeV.
- 28 ALBAJAR 88B result is from the nonobservation of a peak in two-jet invariant mass distribution. $\Gamma(g_A) < 0.4~m_{g_A}$ assumed. See also BAGGER 88.
- ²⁹ CUYPERS 88 requires $\Gamma(\Upsilon \to gg_A) < \Gamma(\Upsilon \to ggg)$. A similar result is obtained by DONCHESKI 88.
- ³⁰ DONCHESKI 88B requires $\Gamma(\Upsilon \to g q \overline{q})/\Gamma(\Upsilon \to g g g) < 0.25$, where the former decay proceeds via axigluon exchange. A more conservative estimate of < 0.5 leads to $m_{g_A} > 21$ GeV.

MASS LIMITS for Color-Octet Scalar Bosons

VALUE (GeV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not us	e the follo	wing data for aver	rages, fits, lim	its, etc. • • •
none 1800-3700	95	¹ SIRUNYAN	20AI CMS	$pp \rightarrow S_8 X, S_8 \rightarrow gg$
none 600-3400	95	² SIRUNYAN	18BO CMS	$pp ightarrow S_8 X$, $S_8 ightarrow gg$
			15AV CMS	$pp ightarrow \ \Theta^0 \ \Theta^0 ightarrow \ b \overline{b} Zg$
none 150-287	95	⁴ AAD	13K ATLS	$pp \rightarrow S_8 S_8 X, S_8 \rightarrow 2$ jets

 $^{^1}$ SIRUNYAN 20AI search for resonances decaying into dijets in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes S_{8gg} coupling $k_{\rm s}^2=1/2$.

- ² SIRUNYAN 18BO search for color octet scalar boson produced through gluon fusion process in pp collisions at $\sqrt{s}=13$ TeV. The limit above assumes S_{8gg} coupling $k_s^2=1/2$.
- ³KHACHATRYAN 15AV search for pair productions of neutral color-octet weak-triplet scalar particles (Θ^0), decaying to $b\overline{b}$, Zg or γg , in pp collisions at $\sqrt{s}=8$ TeV. The Θ^0 particle is often predicted in coloron (G', color-octet gauge boson) models and appear in the pp collisions through $G' \to \Theta^0 \Theta^0$ decays. Assuming B($\Theta^0 \to b\overline{b}$) = 0.5, they give limits $m_{\Theta^0} > 623$ GeV (426 GeV) for $m_{G'} = 2.3$ m_{Θ^0} ($m_{G'} = 5$ m_{Θ^0}).
- ⁴ AAD 13K search for pair production of color-octet scalar particles in pp collisions at \sqrt{s} = 7 TeV. Cross section limits are interpreted as mass limits on scalar partners of a Dirac gluino.

X^0 (Heavy Boson) Searches in Z Decays

Searches for radiative transition of Z to a lighter spin-0 state X^0 decaying to hadrons, a lepton pair, a photon pair, or invisible particles as shown in the comments. The limits are for the product of branching ratios.

illilits are 10	i the prod	uct of branching ra	tios.		
VALUE	CL%	DOCUMENT ID		TECN	COMMENT
ullet $ullet$ We do not	use the fo	llowing data for ave	erages, fi	its, limi	ts, etc. • • •
		$^{ m 1}$ RAINBOLT	19	RVUE	$X^0 \rightarrow \ell^+\ell^-$
		² SIRUNYAN			$\chi^0 ightarrow \ \mu^+ \mu^-$
		³ BARATE	98 U	ALEP	$X^0 ightarrow \ell \overline{\ell}, q \overline{q}, g g, \gamma \gamma, \nu \overline{ u}$
		⁴ ACCIARRI	97Q		$X^0 o ext{invisible particle(s)}$
		⁵ ACTON	93E	OPAL	$X^0 \rightarrow \gamma \gamma$
		⁶ ABREU	92 D	DLPH	$X^0 ightarrow $ hadrons
		⁷ ADRIANI	92F	L3	$X^0 ightarrow $ hadrons
		⁸ ACTON	91	OPAL	, ,
$< 1.1 \times 10^{-4}$	95	⁹ ACTON	91 B	OPAL	$X^0 \rightarrow e^+e^-$
$< 9 \times 10^{-5}$	95	⁹ ACTON	91 B	OPAL	$\chi^0 ightarrow \ \mu^+ \mu^-$
$< 1.1 \times 10^{-4}$	95	⁹ ACTON	91 B	OPAL	$\chi^0 ightarrow \ au^+ au^-$
$< 2.8 \times 10^{-4}$	95	¹⁰ ADEVA	91 D	L3	$X^0 ightarrow e^+e^-$
$< 2.3 \times 10^{-4}$	95	¹⁰ ADEVA	91 D	L3	$\chi^0 ightarrow \ \mu^+ \mu^-$
$< 4.7 \times 10^{-4}$	95	¹¹ ADEVA	91 D	L3	$X^0 o ext{hadrons}$
$< 8 \times 10^{-4}$	95	¹² AKRAWY	90J	OPAL	$X^0 ightarrow ext{hadrons}$

¹ RAINBOLT 19 limits are from B($Z \rightarrow \ell^+ \ell^- \ell^+ \ell^-$). See their Figs. 5 and 6 for limits in mass-coupling plane.

² SIRUNYAN 19AZ search for $pp \to Z \to X^0 \mu^+ \mu^- \to \mu^+ \mu^- \mu^+ \mu^-$ events in pp collisions at $\sqrt{s}=13$ TeV. See their Fig. 5 for limits on $\sigma(pp \to X^0 \mu^+ \mu^-) \cdot \mathsf{B}(X^0 \to \mu^+ \mu^-)$.

³BARATE 98U obtain limits on B($Z \to \gamma X^0$)B($X^0 \to \ell \overline{\ell}, q \overline{q}, g g, \gamma \gamma, \nu \overline{\nu}$). See their Fig. 17.

⁴ See Fig. 4 of ACCIARRI 97Q for the upper limit on B($Z \to \gamma X^0$; $E_{\gamma} > E_{\min}$) as a function of E_{\min} .

⁵ ACTON 93E give $\sigma(e^+e^- \to X^0\gamma)\cdot \mathrm{B}(X^0 \to \gamma\gamma)<0.4~\mathrm{pb}$ (95%CL) for $m_{\chi 0}=60\pm2.5~\mathrm{GeV}$. If the process occurs via s-channel γ exchange, the limit translates to $\Gamma(X^0)\cdot \mathrm{B}(X^0 \to \gamma\gamma)^2<20~\mathrm{MeV}$ for $m_{\chi 0}=60\pm1~\mathrm{GeV}$.

⁶ ABREU 92D give $\sigma_Z \cdot B(Z \to \gamma X^0) \cdot B(X^0 \to \text{hadrons}) < (3-10) \text{ pb for } m_{\chi^0} = 10-78 \text{ GeV}$. A very similar limit is obtained for spin-1 χ^0 .

- 7 ADRIANI 92F search for isolated γ in hadronic Z decays. The limit σ_Z \cdot B(Z o γ X 0) · B($X^0 \rightarrow \text{ hadrons}$) <(2–10) pb (95%CL) is given for $m_{Y^0} = 25-85 \text{ GeV}$.
- ⁸ ACTON 91 searches for $Z \to Z^* X^0$, $Z^* \to e^+ e^-$, $\mu^+ \mu^-$, or $\nu \overline{\nu}$. Excludes any new scalar X^0 with $m_{\chi 0} < 9.5~{
 m GeV}/c$ if it has the same coupling to ZZ^* as the MSM Higgs boson.
- 9 ACTON 91B limits are for $m_{\chi 0} = 60-85$ GeV.
- 10 ADEVA 91D limits are for $m_{\chi 0} = 30-89$ GeV.
- 11 ADEVA 91D limits are for $m_{\chi 0}=$ 30–86 GeV.
- 12 AKRAWY 90J give $\Gamma(Z o \overset{\frown}{\gamma} X^0) \cdot \mathrm{B}(X^0 o \mathrm{hadrons}) < 1.9$ MeV (95%CL) for m_{X^0} = 32–80 GeV. We divide by $\Gamma(Z)=2.5$ GeV to get product of branching ratios. For nonresonant transitions, the limit is B($Z \rightarrow \gamma q \overline{q}$) < 8.2 MeV assuming three-body phase space distribution.

MASS LIMITS for a Heavy Neutral Boson Coupling to e^+e^-

VALUE (GeV)	CL%	DOCUMENT ID		TECN	COMMENT				
ullet $ullet$ We do not use the following data for averages, fits, limits, etc. $ullet$ $ullet$									
none 55-61		¹ ODAKA	89	VNS	$\Gamma(X^0 ightarrow e^+e^-)$ ·				
					$B(X^0 o had.) {\gtrsim} 0.2\; MeV$				
>45	95	² DERRICK	86		$\Gamma(X^0 ightarrow e^+e^-)=6~{ m MeV}$				
>46.6	95	³ ADEVA	85		$\Gamma(X^0 ightarrow~e^+e^-){=}10~{ m keV}$				
>48	95	³ ADEVA	85	MRKJ	$\Gamma(X^0 ightarrow~e^+e^-)=$ 4 MeV				
		⁴ BERGER	85 B	PLUT					
none 39.8-45.5		⁵ ADEVA	84		$\Gamma(X^0 ightarrow~e^+e^-){=}10~{ m keV}$				
>47.8	95	⁵ ADEVA	84	MRKJ	$\Gamma(X^0 ightarrow\ e^+e^-)=$ 4 MeV				
none 39.8-45.2		⁵ BEHREND	84C	CELL	_				
>47	95	⁵ BEHREND	84C	CELL	$\Gamma(X^0 ightarrow\ e^+e^-)=$ 4 MeV				

 $^{^{1}}$ ODAKA 89 looked for a narrow or wide scalar resonance in $e^{+}e^{-}
ightarrow$ hadrons at $E_{
m cm}$

 $^{^{-}}$ 55.0–60.8 GeV. 2 DERRICK 86 found no deviation from the Standard Model Bhabha scattering at $E_{\rm cm}=$ 29 GeV and set limits on the possible scalar boson e^+e^- coupling. See their figure 4 for excluded region in the $\Gamma(X^0 o e^+e^-)$ - m_{X^0} plane. Electronic chiral invariance requires a parity doublet of X^0 , in which case the limit applies for $\Gamma(X^0 \to e^+e^-) =$

³ ADEVA 85 first limit is from 2γ , $\mu^+\mu^-$, hadrons assuming X^0 is a scalar. Second limit is from e^+e^- channel. $E_{\rm cm}=$ 40–47 GeV. Supersedes ADEVA 84.

⁴ BERGER 85B looked for effect of spin-0 boson exchange in $e^+e^-
ightarrow e^+e^-$ and $\mu^+\mu^$ at $E_{\rm cm}=$ 34.7 GeV. See Fig. 5 for excluded region in the $m_{\chi 0}-\Gamma(\chi^0)$ plane.

 $^{^{5}}$ ADEVA 84 and BEHREND 84C have $E_{
m cm}=39.8$ –45.5 GeV. MARK-J searched X^{0} in $e^+e^-
ightarrow$ hadrons, 2γ , $\mu^+\mu^-$, e^+e^- and CELLO in the same channels plus au pair. No narrow or broad X^0 is found in the energy range. They also searched for the effect of χ^0 with $m_{\chi} > E_{\rm cm}$. The second limits are from Bhabha data and for spin-0 singlet. The same limits apply for $\Gamma(X^0 \to e^+e^-) = 2$ MeV if X^0 is a spin-0 doublet. The second limit of BEHREND 84C was read off from their figure 2. The original papers also list limits in other channels.

Search for X^0 Resonance in e^+e^- Collisions

The limit is for $\Gamma(X^0 \to e^+e^-) \cdot B(X^0 \to f)$, where f is the specified final state. Spin 0 is assumed for X^0 .

VALUE (keV)	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	ne followi	ng data for averages,	fits, limits,	etc. • • •
$< 10^{3}$	95		3c VNS	Γ(<i>e e</i>)
<(0.4–10)	95		3C VNS	$f=\gamma\gamma$
<(0.3–5)	95		3D TOP	\mathbf{Z} $f = \gamma \gamma$
<(2-12)	95		3D TOP	Z f = hadrons
<(4-200)	95		3D TOP	Z f = ee
<(0.1–6)	95	^{4,5} ABE 9	3D TOP	$\mathbf{Z} f = \mu \mu$
<(0.5–8)	90	⁶ STERNER 9	3 AMY	$f = \gamma \gamma$
1 . 0	1			n.

 $^{^1 \, {\}rm Limit}$ is for $\Gamma(X^0 \rightarrow ~e^+ \, e^-) ~m_{X^0} = 56 \text{--} 63.5 \; {\rm GeV}$ for $\Gamma(X^0) = 0.5 \; {\rm GeV}.$

Search for X^0 Resonance in ep Collisions

VALUE DOCUMENT ID TECN COMMENT

Search for X^0 Resonance in $e^+e^- o X^0\gamma$

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • We do not use the following data for averages, fits, limits, etc. • •

² Limit is for $m_{\chi^0}=$ 56–61.5 GeV and is valid for $\Gamma(\chi^0)\ll$ 100 MeV. See their Fig. 5 for limits for $\Gamma=1,2$ GeV.

 $^{^3}$ Limit is for $m_{\chi^0}=57.2$ –60 GeV.

⁴ Limit is valid for $\Gamma(X^0) \ll 100$ MeV. See paper for limits for $\Gamma=1$ GeV and those for J=2 resonances.

⁵ Limit is for $m_{\chi^0} = 56.6-60$ GeV.

⁶ STERNER 93 limit is for $m_{\chi^0}=57$ –59.6 GeV and is valid for $\Gamma(\chi^0)<100$ MeV. See their Fig. 2 for limits for $\Gamma=1,3$ GeV.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

¹ CHEKANOV 02B ZEUS $X \rightarrow jj$

 $^{^1}$ CHEKANOV 02B search for photoproduction of X decaying into dijets in ep collisions. See their Fig. 5 for the limit on the photoproduction cross section.

 $^{^1}$ ABBIENDI 03D measure the $e^+e^-\to\gamma\gamma\gamma$ cross section at $\sqrt{s}{=}181{-}209$ GeV. The upper bound on the production cross section, $\sigma(e^+e^-\to X^0\gamma)$ times the branching ratio for $X^0\to\gamma\gamma$, is less than 0.03 pb at 95%CL for X^0 masses between 20 and 180 GeV. See their Fig. 9b for the limits in the mass-cross section plane.

² ABREU 00Z is from the single photon cross section at \sqrt{s} =183, 189 GeV. The production cross section upper limit is less than 0.3 pb for X^0 mass between 40 and 160 GeV. See their Fig. 4 for the limit in mass-cross section plane.

³ ADAM 96C is from the single photon production cross at \sqrt{s} =130, 136 GeV. The upper bound is less than 3 pb for X^0 masses between 60 and 130 GeV. See their Fig. 5 for the exact bound on the cross section $\sigma(e^+e^- \to \gamma X^0)$.

Search for X^0 Resonance in $Z \rightarrow f \overline{f} X^0$

The limit is for $B(Z \to f\overline{f}X^0) \cdot B(X^0 \to F)$ where f is a fermion and F is the specified final state. Spin 0 is assumed for X^0 .

<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
		¹ ABREU	96T	DLPH	$f=e,\mu,\tau; F=\gamma\gamma$
$< 3.7 \times 10^{-6}$	95	² ABREU	96T	DLPH	$f=\nu$; $F=\gamma\gamma$
		³ ABREU	96T	DLPH	$f=q$; $F=\gamma \gamma$
$< 6.8 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=e,\mu,\tau; F=\gamma\gamma$
$< 5.5 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=q$; $F=\gamma \gamma$
$< 3.1 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=\nu$; $F=\gamma\gamma$
$< 6.5 \times 10^{-6}$	95	² ACTON	93E	OPAL	$f=e,\mu; F=\ell \overline{\ell}, q \overline{q}, \nu \overline{\nu}$
$< 7.1 \times 10^{-6}$	95	² BUSKULIC	93F	ALEP	$f=e,\mu$; $F=\ell \overline{\ell}$, $q \overline{q}$, $\nu \overline{\nu}$
		⁴ ADRIANI	92F	L3	$f=q$; $F=\gamma\gamma$

 $^{^1}$ ABREU 96T obtain limit as a function of $m_{\chi 0}$. See their Fig. 6.

Search for X^0 Resonance in WX^0 final state VALUE (MeV)

• • We do not use the following data for averages, fits, limits, etc. • •

$^{ m 1}$ AALTONEN				
² CHATRCHYAN				
	111	D0	$X^0 \rightarrow$	jj
⁴ ARF	97\\\	CDF	$x^0 \rightarrow$	$h\overline{h}$

Created: 8/11/2022 09:39

Search for X^0 Resonance in Quarkonium Decays

Limits are for branching ratios to modes shown. Spin 1 is assumed for X^0 . DOCUMENT ID TECN COMMENT

 $^{^2\,\}mathrm{Limit}$ is for m_{χ^0} around 60 GeV.

 $^{^3}$ ABREU 96T obtain limit as a function of $m_{\chi 0}$. See their Fig. 15.

⁴ ADRIANI 92F give $\sigma_Z \cdot \mathrm{B}(Z \to q \overline{q} X^0) \cdot \overset{\frown}{\mathrm{B}}(X^0 \to \gamma \gamma) < (0.75\text{-}1.5) \,\mathrm{pb}$ (95%CL) for $m_{X^0} = 10\text{-}70$ GeV. The limit is 1 pb at 60 GeV.

¹ AALTONEN 13AA search for X^0 production associated with W (or Z) in $p\bar{p}$ collisions at $E_{
m cm}=$ 1.96 TeV. The upper limit on the cross section $\sigma(p\overline{p}
ightarrow~WX^0)$ is 2.2 pb for $M_{\chi 0} = 145 \text{ GeV}.$

 $^{^2}$ CHATRCHYAN 12BR search for X^0 production associated with W in pp collisions at $E_{\rm cm}=7$ TeV. The upper limit on the cross section is 5.0 pb at 95% CL for $m_{\chi 0}=$

³ ABAZOV 11I search for X^0 production associated with W in $p\overline{p}$ collisions at $E_{\rm cm}=1.96$ TeV. The 95% CL upper limit on the cross section ranges from 2.57 to 1.28 pb for

 X^0 mass between 110 and 170 GeV. 4 ABE 97W search for X^0 production associated with W in $p\overline{p}$ collisions at $E_{\rm cm}{=}1.8$ TeV. The 95%CL upper limit on the production cross section times the branching ratio for $X^0 \rightarrow b\overline{b}$ ranges from 14 to 19 pb for X^0 mass between 70 and 120 GeV. See their Fig. 3 for upper limits of the production cross section as a function of $m_{\chi 0}$.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
 3 \times 10⁻⁵–6 \times 10⁻³ 90 1 BALEST 95 CLE2 $\Upsilon(1S) \to X^{0} \overline{X}^{0} \gamma$, $m_{\chi 0} <$ 3.9 GeV

Search for X^0 Resonance in H(125) Decays

Spin 1 is assumed for X^0 . See neutral Higgs search listing for pseudoscalar X^0 . VALUE

DOCUMENT ID

TECN
COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

1
 AABOUD 18AP ATLS $H(125) \rightarrow ZX^{0}$ 2 AABOUD 18AP ATLS $H(125) \rightarrow X^{0}X^{0}$

Created: 8/11/2022 09:39

REFERENCES FOR Searches for New Heavy Bosons (W', Z', leptoquarks, etc.)

AAD	22 PR D105 012001	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21AG EPJ C81 313	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21AQ JHEP 2107 005	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21AW PR D104 112005	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21AZ JHEP 2110 013	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21BB JHEP 2111 209	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21D PRL 126 121802	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21K JHEP 2102 226	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21S JHEP 2105 093	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	21T JHEP 2106 179	G. Aad <i>et al.</i>	(ATLAS Collab.)
BURAS	21 JHEP 2106 068	A.J. Buras <i>et al</i> .	(TUM, CERN, ZURI+)
CADEDDU	21 JHEP 2101 116	M. Cadeddu et al.	ČAGLI, CAGL, INFN+)
COLARESI	21 PR D104 072003	J. Colaresi <i>et al.</i> (MRION, FNAL, PNL+)
CRIVELLIN	21A PR D103 115023	A. Crivellin, D. Mueller, L. Schne	II (CERN, ZURI $+$)
KRIBS	21 PRL 126 011801	G.D. Kribs, D. McKeen, N. Raj	`(OREG, TRIU)
SIRUNYAN	21J PL B819 136446	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	21N JHEP 2107 208	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	21X EPJ C81 688	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN	21Y PL B820 136535	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
TUMASYAN	21D JHEP 2111 153	A. Tumasyan <i>et al.</i>	(CMS Collab.)
AAD	20AD PRL 125 131801	G. Aad et al.	(ATLAS Collab.)
AAD	20AF PRL 125 251802	G. Aad et al.	(ATLAS Collab.)
AAD	20AJ PR D102 112008	G. Aad et al.	(ATLAS Collab.)
AAD	20AK JHEP 2010 112	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20AM JHEP 2010 061	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20AT EPJ C80 1165	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20S EPJ C80 737	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20T JHEP 2003 145	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAD	20W JHEP 2006 151	G. Aad <i>et al.</i>	(ATLAS Collab.)
AAIJ	20AL JHEP 2010 156	R. Aaij <i>et al.</i>	(LHCb Collab.)
ADACHI	20 PRL 124 141801	I. Adachi <i>et al.</i>	(BELLE II Collab.)
AEBISCHER	20 EPJ C80 252	J. Aebischer <i>et al.</i>	(TUM, LAPTH, UCSC)
DEPPISCH	20 JHEP 2012 186	F.F. Deppisch, K. Fridell, J. Harz	(LOUC, TUM)
SIRUNYAN	20A EPJ C80 3	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20AI JHEP 2005 033	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20AQ PRL 124 131802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20M PL B805 135448	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	20Q EPJ C80 237	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD	19AJ PL B795 56	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AS PR D99 092004	M. Aaboud <i>et al.</i>	(ATLAS Collab.)

¹ BALEST 95 three-body limit is for phase-space photon energy distribution and angular distribution same as for $\Upsilon \to g g \gamma$.

 $^{^1}$ AABOUD 18AP use $p\,p$ collision data at $\sqrt{s}=$ 13 TeV. $X^0\to \ell^+\ell^-$ decay is assumed. See their Fig. 9 for limits on $\sigma_{H(125)}\cdot {\rm B}(ZX^0).$

² AABOUD 18AP use pp collision data at $\sqrt{s}=13$ TeV. $X^0\to \ell^+\ell^-$ decay is assumed. See their Fig. 10 for limits on $\sigma_{H(125)}\cdot \mathrm{B}(X^0X^0)$.

AABOUD	10AY	EPJ C79 733	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19AA	JHEP 1901 016	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	-	PL B798 134942	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19D	PL B788 316	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	19E	PL B788 347	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19V	JHEP 1905 142	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	19X	JHEP 1906 144	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAD	19C	PR D100 052013	G. Aad et al.	(ATLAS Collab.)
AAD	19D	JHEP 1909 091	G. Aad et al.	(ATLAS Collab.)
Also AAD	19L	JHEP 2006 042 (errat.) PL B796 68	G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
ABRAMOWICZ		PR D99 092006	H. Abramowicz <i>et al.</i>	(ZEUS Collab.)
LONG	19	NP B943 114629	H.N. Long et al.	(ZEOS CONAD.)
MANDAL	19	JHEP 1912 089	R. Mandal, A. Pich	(VALE, SIEG)
PANDEY	19	JHEP 1911 046	S. Pandey, S. Karmakar, S. Rakshit	` (IITI)
RAINBOLT	19	PR D99 013004	J.L. Rainbolt, M. Schmitt	(NWES)
SIRUNYAN		JHEP 1904 031	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C79 208	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		EPJ C79 280 PL B792 107	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN SIRUNYAN		PL B792 107 PL B792 345	A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN		PL B795 76	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		PR D99 032014	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19BJ	PR D99 052002	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PR D100 112007	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 123 231803	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PL B798 134952	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN SIRUNYAN	19D 19I	PRL 122 081804 JHEP 1901 051	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN	19V	JHEP 1903 127	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	19Y	JHEP 1903 170	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
AABOUD		PR D98 032015	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18AB	PR D98 032016	M. Aaboud et al.	(ATLAS Collab.)
AABOUD		PL B779 24	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		PL B781 327	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18AI	JHEP 1803 174	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
Also AABOUD	18 A K	JHEP 1811 051 (errat.) JHEP 1803 042	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		JHEP 1803 009	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18AP	JHEP 1806 166	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18B	EPJ C78 24	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD		EPJ C78 401	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18BI	EPJ C78 565	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD AABOUD		PL B787 68 PR D98 052008	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.)
AABOUD		PR D98 092008	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18F	PL B777 91	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18G	JHEP 1801 055	M. Aaboud et al.	(ATLAS Collab.)
AABOUD	18K	PRL 120 161802	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AABOUD	18N		M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAIJ	-	JHEP 1809 147	R. Aaij <i>et al.</i>	(LHCb Collab.)
BOBOVNIKOV SIRUNYAN	18 18	PR D98 095029 PL B777 39	I.D. Bobovnikov, P. Osland, A.A. Panko A.M. Sirunyan <i>et al.</i>	v (BERG+) (CMS Collab.)
SIRUNYAN		JHEP 1804 073	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1805 088	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18AZ	JHEP 1806 128	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1806 120	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1807 115	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN SIRUNYAN		JHEP 1807 075	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1808 130 JHEP 1805 148	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN		EPJ C78 707	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1809 101	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		JHEP 1811 161	A.M. Sirunyan et al.	(CMS Collab.)
SIRUNYAN		PRL 121 241802	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN		JHEP 1811 172	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN	18G 181	JHEP 1801 097 PRI 120 201801	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
SIRUNYAN SIRUNYAN	18I 18P	PRL 120 201801 PR D97 072006	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN	18U	PR D98 032005	A.M. Sirunyan <i>et al.</i>	(CMS Collab.)
ZHANG	18A	EPJ C78 695	J. Zhang, ĆX. Yue, CH. Li	` (LNUDA)

AABOUD AABOUD AABOUD AABOUD KHACHATRY KHACHATRY	17AO 17AT 17B 17AX	PR D96 052004 PL B774 494 JHEP 1710 182 PL B765 32 PL B773 563 JHEP 1702 048	M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. M. Aaboud et al. V. Khachatryan et al. V. Khachatryan et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY KHACHATRY KHACHATRY	17T 17U 17W	JHEP 1703 077 PL B768 57 PL B768 137 PL B769 520 PL B770 257	V. Khachatryan et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY SIRUNYAN SIRUNYAN	17Z 17A	PL B770 278 JHEP 1703 162 PL B774 533	V. Khachatryan <i>et al.</i> A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
SIRUNYAN SIRUNYAN	17AP 17H	JHEP 1710 180 JHEP 1707 121	A.M. Sirunyan <i>et al.</i> A.M. Sirunyan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
SIRUNYAN SIRUNYAN SIRUNYAN	17I 17Q 17R	JHEP 1708 029 JHEP 1707 001 EPJ C77 636	A.M. Sirunyan et al. A.M. Sirunyan et al. A.M. Sirunyan et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.)
SIRUNYAN SIRUNYAN AABOUD	17T 17V 16	PRL 119 111802 JHEP 1709 053 PL B759 229	A.M. Sirunyan et al. A.M. Sirunyan et al. M. Aaboud et al.	(CMS Collab.) (CMS Collab.) (ATLAS Collab.)
AABOUD AABOUD AABOUD	16AE 16P	EPJ C76 585 JHEP 1609 173 EPJ C76 541	M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i> M. Aaboud <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AABOUD AABOUD AAD	16U 16V 16G	PL B761 372 PL B762 334 EPJ C76 5	M. Aaboud et al. M. Aaboud et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD	16L 16R 16S	EPJ C76 210 PL B755 285 PL B754 302	G. Aad et al. G. Aad et al. G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
BARRANCO DEY	16W 16 16	PL B758 249 JP G43 115004 JHEP 1604 187 PR D93 032004	G. Aad <i>et al.</i> J. Barranco <i>et al.</i> U.K. Dey, S. Mohanty V. Khachatryan <i>et al.</i>	(ATLAS Collab.)
KHACHATRY Also	16AG	PR D93 032005 PR D95 039906 (errat.) JHEP 1602 122	V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
	16AP 16BD	JHEP 1602 145 EPJ C76 237	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY	16E 16K	PR D93 012001 PRL 116 071801 PRL 117 031802	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KUMAR AAD	16	PL B755 196 PR D94 014022 JHEP 1507 157	V. Khachatryan <i>et al.</i> G. Kumar G. Aad <i>et al.</i>	(CMS Collab.) (ATLAS Collab.)
AAD AAD AAD	15AT	JHEP 1508 148 EPJ C75 79 EPJ C75 69	G. Aad et al.G. Aad et al.G. Aad et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD Also	15AZ	EPJ C75 165 EPJ C75 209 EPJ C75 370 (errat.)	G. Aad <i>et al.</i> G. Aad <i>et al.</i> G. Aad <i>et al.</i>	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD	15CD 15CP	EPJ C75 263 PR D92 092001 JHEP 1512 055 PRL 115 031801	 G. Aad et al. G. Aad et al. G. Aad et al. G. Aad et al. 	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.)
AAD AAD AAD AALTONEN	15O 15R 15V 15C	PL B743 235 PR D91 052007 PRL 115 061801	G. Aad et al. G. Aad et al. T. Aaltonen et al.	(ATLAS Collab.) (ATLAS Collab.) (ATLAS Collab.) (CDF Collab.)
BESSAA	15 15AE	EPJ C75 97 JHEP 1504 025 JHEP 1507 042	A. Bessaa, S. Davidson V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY KHACHATRY	15C 15F	PL B740 83 PRL 114 101801	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.) (CMS Collab.) (CMS Collab.)
KHACHATRY KHACHATRY	15T 15V	PL B748 255 PR D91 092005 PR D91 052009	V. Khachatryan et al. V. Khachatryan et al. V. Khachatryan et al.	(CMS Collab.) (CMS Collab.) (CMS Collab.)
SAHOO AAD	15A 14AI	PR D91 094019 JHEP 1409 037	S. Sahoo, R. Mohanta G. Aad <i>et al.</i>	(ATLAS Collab.)

AAD		PL B738 428		Aad et al.		Collab.)
AAD AAD	14S 14V	PL B737 223 PR D90 052005		Aad <i>et al.</i> Aad <i>et al.</i>	(ATLAS	Collab.)
KHACHATRY		JHEP 1408 173		Khachatryan <i>et al.</i>		Collab.)
KHACHATRY		JHEP 1408 174		Khachatryan <i>et al.</i>		Collab.)
KHACHATRY		EPJ C74 3149		Khachatryan et al.		Collab.)
KHACHATRY	14T	PL B739 229		Khachatryan <i>et al.</i>		Collab.)
MARTINEZ	14	PR D90 015028		Martinez, F. Ochoa		
PRIEELS	14	PR D90 112003		Prieels et al.	(LOUV, ETH	
AAD AAD		JHEP 1306 033 PR D87 112006		Aad <i>et al.</i> Aad <i>et al.</i>		Collab.) Collab.)
AAD		PR D88 012004		Aad et al.		Collab.)
AAD	13D	JHEP 1301 029		Aad et al.		Collab.)
AAD	13G	JHEP 1301 116		Aad et al.		Collab.)
AAD	13K	EPJ C73 2263		Aad et al.		Collab.)
AAD	13S	PL B719 242		Aad et al.	(ATLAS	Collab.)
AALTONEN	13A	PRL 110 121802		Aaltonen <i>et al.</i>	(CDF	Collab.)
AALTONEN AALTONEN	13AA 13R	PR D88 092004 PRL 111 031802		Aaltonen <i>et al.</i> Aaltonen <i>et al.</i>		Collab.)
CHATRCHYAN		JHEP 1301 013	S	Chatrchyan et al.		Collab.)
CHATRCHYAN			S.	Chatrchyan et al.		Collab.)
CHATRCHYAN			S.	Chatrchyan et al.		Collab.)
CHATRCHYAN	13AP	PR D87 072002	S.	Chatrchyan et al.	(CMS	Collab.)
		PR D87 072005		Chatrchyan et al.		Collab.)
		PR D87 114015		Chatrchyan et al.		Collab.)
		PRL 110 141802 PRL 111 211804		Chatrohyan et al.	` `	Collab.)
Also	TODIVI	PRL 111 211004 PRL 112 119903 (errat.)		Chatrchyan et al.		Collab.) Collab.)
CHATRCHYAN	13E	PL B718 1229		Chatrchyan et al.		Collab.)
		PRL 110 081801		Chatrchyan et al.		Collab.)
CHATRCHYAN	13U	JHEP 1302 036	S.	Chatrchyan et al.	(CMS	Collab.)
SAKAKI	13			Sakaki <i>et al.</i>		
AAD		PRL 109 081801		Aad et al.	``	Collab.)
AAD				And et al.		Collab.)
AAD AAD		JHEP 1209 041 JHEP 1211 138	G.	Aad <i>et al.</i> Aad <i>et al.</i>	`	Collab.) Collab.)
AAD				Aad et al.		Collab.)
AAD				Aad et al.		Collab.)
AAD	12H	PL B709 158		Aad et al.	(ATLAS	Collab.)
Also		PL B711 442 (errat.)	G.	Aad et al.		Collab.)
AAD	12K	EPJ C72 2083		Aad et al.		Collab.)
AAD	12M	EPJ C72 2056		Aad et al.		Collab.)
AAD AALTONEN	120	EPJ C72 2151 PR D86 112002		Aad <i>et al.</i> Aaltonen <i>et al.</i>	` .	Collab.) Collab.)
AALTONEN	12N	PRL 108 211805		Aaltonen <i>et al.</i>		Collab.)
ABAZOV	12R			M. Abazov <i>et al.</i>	,	Collab.)
ABRAMOWICZ	12A	PR D86 012005	Н.	Abramowicz et al.	(ZÈUS	Collab.)
				Chatrchyan et al.		Collab.)
		PR D86 052013		Chatrchyan et al.		Collab.)
		JHEP 1208 110 JHEP 1209 029		Chatrohyan et al.		Collab.) Collab.)
Also	IZAQ	JHEP 1403 132 (errat.)		Chatrchyan <i>et al.</i> Chatrchyan <i>et al.</i>		Collab.)
CHATRCHYAN	12AR			Chatrchyan et al.	` `	Collab.)
		PRL 109 261802		Chatrchyan <i>et al.</i>		Collab.)
CHATRCHYAN	12BL	JHEP 1212 015		Chatrchyan et al.	(CMS	Collab.)
		JHEP 1212 055		Chatrchyan et al.		Collab.)
		PRL 109 251801		Chatrchyan et al.		Collab.)
CHATRCHYAN CHATRCHYAN		PL B714 158 PL B716 82		Chatrohyan et al.		Collab.)
KOSNIK	120	PR D86 055004		Chatrchyan <i>et al.</i> Kosnik		Collab.) STFN)
AAD	11D	PR D83 112006		Aad <i>et al.</i>		Collab.)
AAD	11H	PRL 106 251801		Aad et al.		Collab.)
AAD	11Z	EPJ C71 1809	G.	Aad et al.		Collab.)
AALTONEN		PR D84 072003		Aaltonen et al.		Collab.)
AALTONEN		PR D84 072004		Aaltonen et al.	· `	Collab.)
AALTONEN AALTONEN	11C 11I	PR D83 031102 PRL 106 121801		Aaltonen <i>et al.</i> Aaltonen <i>et al.</i>	· `	Collab.) Collab.)
AARON	11A	PL B701 20		D. Aaron et al.		Collab.)
AARON	11B	PL B704 388		D. Aaron et al.		Collab.)
AARON	11C	PL B705 52	F.	D. Aaron et al.	(H1	Collab.)
ABAZOV	11A	PL B695 88	V.	M. Abazov <i>et al.</i>	(D0	Collab.)

ABAZOV	11H	PRL 107 011801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	111	PRL 107 011804	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	11L	PL B699 145	V.M. Abazov et al.	(D0 Collab.)
ABAZOV BUENO	11V 11	PR D84 071104 PR D84 032005	V.M. Abazov <i>et al.</i> J.F. Bueno <i>et al.</i>	(D0 Collab.)
Also	11	PR D85 039908 (errat.)		(TWIST Collab.) (TWIST Collab.)
CHATRCHYAN	11N	PL B703 246	S. Chatrchyan <i>et al.</i>	(CMS Collab.)
CHATRCHYAN	110	JHEP 1108 005	S. Chatrchyan et al.	(CMS Collab.)
CHATRCHYAN		PL B704 123	S. Chatrchyan et al.	(CMS Collab.)
DORSNER	11	JHEP 1111 002	I. Dorsner <i>et al.</i>	(6)46 6 11 1
KHACHATRY KHACHATRY		PRL 106 201802 PRL 106 201803	V. Khachatryan <i>et al.</i> V. Khachatryan <i>et al.</i>	(CMS Collab.)
AALTONEN	10L	PL B691 183	T. Aaltonen <i>et al.</i>	(CMS Collab.) (CDF Collab.)
AALTONEN	10N	PRL 104 241801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	10L	PL B693 95	V.M. Abazov et al.	` (D0 Collab.)
DEL-AGUILA	10	JHEP 1009 033	F. del Aguila, J. de Blas, M.	
KHACHATRY	. 10	PRL 105 211801	V. Khachatryan <i>et al.</i>	(CMS Collab.)
Also WAUTERS	10	PRL 106 029902 PR C82 055502	V. Khachatryan <i>et al.</i> F. Wauters <i>et al.</i>	(CMS Collab.) (REZ, TAMU)
AALTONEN		PR D79 112002	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09T	PRL 102 031801	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	09V	PRL 102 091805	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09	PL B671 224	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	09AF 09	PL B681 224	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ERLER AALTONEN	09 08D	JHEP 0908 017 PR D77 051102	J. Erler <i>et al.</i> T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08P	PR D77 091105	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	08Y	PRL 100 231801	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	08Z	PRL 101 071802	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV		PL B668 98	V.M. Abazov et al.	(D0 Collab.)
ABAZOV		PL B668 357 PRL 101 241802	V.M. Abazov <i>et al.</i> V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV ABAZOV	08C	PRL 101 241602 PRL 100 031804	V.M. Abazov et al.	(D0 Collab.) (D0 Collab.)
MACDONALD	08	PR D78 032010	R.P. MacDonald <i>et al.</i>	(TWIST Collab.)
ZHANG	80	NP B802 247	Y. Zhang et al.	` (PKGU, UMD)
AALTONEN	07H	PRL 99 171802	T. Aaltonen et al.	(CDF Collab.)
ABAZOV	07E	PL B647 74	V.M. Abazov et al.	(D0 Collab.)
ABAZOV AKTAS	07J 07A	PRL 99 061801 EPJ C52 833	V.M. Abazov <i>et al.</i> A. Aktas <i>et al.</i>	(D0 Collab.) (H1 Collab.)
CHOUDHURY	07	PL B657 69	D. Choudhury <i>et al.</i>	(TT Collab.)
MELCONIAN	07	PL B649 370	D. Melconian et al.	(TRIUMF)
SCHAEL	07A	EPJ C49 411	S. Schael et al.	(ALEPH Collab.)
SCHUMANN	07	PRL 99 191803	M. Schumann et al.	(HEID, ILLG, KARL+)
SMIRNOV ABAZOV	07 06A	MPL A22 2353 PL B636 183	A.D. Smirnov V.M. Abazov <i>et al.</i>	(D0 Callab.)
ABAZOV	06L	PL B640 230	V.M. Abazov et al.	(D0 Collab.) (D0 Collab.)
ABDALLAH	06C	EPJ C45 589	J. Abdallah <i>et al.</i>	(DELPHI Collab.)
ABULENCIA	06L	PRL 96 211801	A. Abulencia et al.	` (CDF Collab.)
ABULENCIA	06M	PRL 96 211802	A. Abulencia et al.	(CDF Collab.)
ABULENCIA	06T	PR D73 051102	A. Abulencia <i>et al.</i>	(CDF Collab.)
ABAZOV ABULENCIA	05H 05A	PR D71 071104 PRL 95 252001	V.M. Abazov <i>et al.</i> A. Abulencia <i>et al.</i>	(D0 Collab.) (CDF Collab.)
ACOSTA	05I	PR D71 112001	D. Acosta <i>et al.</i>	(CDF Collab.)
ACOSTA	05P	PR D72 051107	D. Acosta et al.	(CDF Collab.)
ACOSTA	05R	PRL 95 131801	D. Acosta et al.	(CDF Collab.)
AKTAS	05B	PL B629 9	A. Aktas <i>et al.</i>	(H1 Collab.)
CHEKANOV CHEKANOV	05 05A	PL B610 212 EPJ C44 463	S. Chekanov <i>et al.</i> S. Chekanov <i>et al.</i>	(HERA ZEUS Collab.) (ZEUS Collab.)
CYBURT	05	ASP 23 313	R.H. Cyburt <i>et al.</i>	(ZEOS CONAD.)
ABAZOV	04A	PRL 92 221801	V.M. Abazov et al.	(D0 Collab.)
ABAZOV	04C	PR D69 111101	V.M. Abazov et al.	(D0 Collab.)
ABBIENDI	04G	EPJ C33 173	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBIENDI ABBIENDI	03D 03R	EPJ C26 331 EPJ C31 281	G. Abbiendi <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.) (OPAL)
ACOSTA	03R	PRL 90 081802	D. Acosta <i>et al.</i>	(CDF Collab.)
ADLOFF	03	PL B568 35	C. Adloff et al.	` (H1 Collab.)
BARGER	03B	PR D67 075009	V. Barger, P. Langacker, H. L	
CHEKANOV	03 02 P	PR D68 111101	MC. Chang et al.	(BELLE Collab.)
CHEKANOV ABAZOV	03B 02	PR D68 052004 PRL 88 191801	S. Chekanov <i>et al.</i> V.M. Abazov <i>et al.</i>	(ZEUS Collab.) (D0 Collab.)
ABBIENDI	02B	PL B526 233	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
		-	-	(22.)

AFFOLDER CHEKANOV CHEKANOV MUECK	02C 02 02B 02	PRL 88 071806 PR D65 092004 PL B531 9 PR D65 085037	T. Affolder et al. S. Chekanov et al. S. Chekanov et al. A. Mueck, A. Pilaftsis, R. Rueckl	(CDF Collab.) (ZEUS Collab.) (ZEUS Collab.)
ABAZOV	01B	PRL 87 061802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ABAZOV	01D	PR D64 092004	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ADLOFF AFFOLDER	01C 01I	PL B523 234 PRL 87 231803	C. Adloff <i>et al.</i> T. Affolder <i>et al.</i>	(H1 Collab.) (CDF Collab.)
BREITWEG	01	PR D63 052002	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
CHEUNG	01B	PL B517 167	K. Cheung	
THOMAS ABBIENDI	01 00M	NP A694 559 EPJ C13 15	E. Thomas <i>et al.</i> G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABBOTT	00C	PRL 84 2088	B. Abbott <i>et al.</i>	(D0 Collab.)
ABE	00	PRL 84 5716	F. Abe <i>et al.</i>	(CDF Collab.)
ABREU ABREU	00S 00Z	PL B485 45 EPJ C17 53	P. Abreu <i>et al.</i> P. Abreu <i>et al.</i>	(DELPHI Collab.) (DELPHI Collab.)
ACCIARRI	00Z	PL B489 81	M. Acciarri <i>et al.</i>	(L3 Collab.)
ADLOFF	00	PL B479 358	C. Adloff et al.	(H1 Collab.)
AFFOLDER	00K	PRL 85 2056	T. Affolder <i>et al.</i>	(CDF Collab.)
BARATE BARGER	00I 00	EPJ C12 183 PL B480 149	R. Barate <i>et al.</i> V. Barger, K. Cheung	(ALEPH Collab.)
BREITWEG	00E	EPJ C16 253	J. Breitweg <i>et al.</i>	(ZEUS Collab.)
CHAY	00	PR D61 035002	J. Chay, K.Y. Lee, S. Nam	
CHO CORNET	00 00	MPL A15 311 PR D61 037701	G. Cho F. Cornet, M. Relano, J. Rico	
DELGADO	00	JHEP 0001 030	A. Delgado, A. Pomarol, M. Quiros	
ERLER	00	PRL 84 212	J. Erler, P. Langacker	
GABRIELLI RIZZO	00 00	PR D62 055009 PR D61 016007	E. Gabrielli T.G. Rizzo, J.D. Wells	
ROSNER	00	PR D61 016006	J.L. Rosner	
ZARNECKI	00	EPJ C17 695	A. Zarnecki	
ABBIENDI ABBOTT	99 99 J	EPJ C6 1	G. Abbiendi <i>et al.</i> B. Abbott <i>et al.</i>	(OPAL Collab.)
ABREU	99G	PRL 83 2896 PL B446 62	P. Abreu <i>et al.</i>	(D0 Collab.) (DELPHI Collab.)
ACKERSTAFF	99D	EPJ C8 3	K. Ackerstaff et al.	`(OPAL Collab.)
ADLOFF	99	EPJ C11 447	C. Adloff et al.	(H1 Collab.)
Also CASALBUONI	99	EPJ C14 553 (errat.) PL B460 135	C. Adloff <i>et al.</i> R. Casalbuoni <i>et al.</i>	(H1 Collab.)
CZAKON	99	PL B458 355	M. Czakon, J. Gluza, M. Zralek	
ERLER	99	PL B456 68	J. Erler, P. Langacker	
MARCIANO MASIP	99 99	PR D60 093006 PR D60 096005	W. Marciano M. Masip, A. Pomarol	
NATH	99	PR D60 116004	P. Nath, M. Yamaguchi	
STRUMIA	99 00 5	PL B466 107	A. Strumia	(D0 C)
ABBOTT ABBOTT	98E 98J	PRL 80 2051 PRL 81 38	B. Abbott <i>et al.</i> B. Abbott <i>et al.</i>	(D0 Collab.) (D0 Collab.)
ABE	98S	PRL 81 4806	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	98V	PRL 81 5742	F. Abe <i>et al.</i>	(CDF Collab.)
ACCIARRI ACKERSTAFF	98J 98V	PL B433 163 EPJ C2 441	M. Acciarri <i>et al.</i> K. Ackerstaff <i>et al.</i>	(L3 Collab.) (OPAL Collab.)
BARATE	98U	EPJ C4 571	R. Barate <i>et al.</i>	(ALEPH Collab.)
BARENBOIM	98	EPJ C1 369	G. Barenboim	,
CHO CONRAD	98 98	EPJ C5 155 RMP 70 1341	G. Cho, K. Hagiwara, S. Matsumoto J.M. Conrad, M.H. Shaevitz, T. Bolto	ın
DONCHESKI	98	PR D58 097702	M.A. Doncheski, R.W. Robinett	
GROSS-PILCH.		hep-ex/9810015	C. Grosso-Pilcher, G. Landsberg, M. F	and the second s
ABE ABE	97F 97G	PRL 78 2906 PR D55 5263	F. Abe <i>et al.</i> F. Abe <i>et al.</i>	(CDF Collab.) (CDF Collab.)
ABE	97S	PRL 79 2192	F. Abe et al.	(CDF Collab.)
ABE	97W	PRL 79 3819	F. Abe <i>et al.</i>	(CDF Collab.)
ABE ACCIARRI	97X 97Q	PRL 79 4327 PL B412 201	F. Abe <i>et al.</i> M. Acciarri <i>et al.</i>	(CDF Collab.) (L3 Collab.)
ARIMA	97	PR D55 19	T. Arima et al.	(VENUS Collab.)
BARENBOIM	97	PR D55 4213	G. Barenboim et al.	(VALE, IFIC)
DEANDREA DERRICK	97 97	PL B409 277 ZPHY C73 613	A. Deandrea M. Derrick <i>et al.</i>	(MARS) (ZEUS Collab.)
GROSSMAN	97	PR D55 2768	Y. Grossman, Z. Ligeti, E. Nardi	(REHO, CIT)
JADACH	97	PL B408 281	S. Jadach, B.F.L. Ward, Z. Was	(CERN, INPK+)
STAHL ABACHI	97 96C	ZPHY C74 73 PRL 76 3271	A. Stahl, H. Voss S. Abachi <i>et al.</i>	(BONN) (D0 Collab.)
ABREU	96T	ZPHY C72 179	P. Abreu <i>et al.</i>	(DELPHI Collab.)
				,

ADAM AID ALLET ABACHI ABE BALEST KUZNETSOV KUZNETSOV	96C 96B 96 95E 95N 95 95	PL B380 471 PL B369 173 PL B383 139 PL B358 405 PRL 74 3538 PR D51 2053 PRL 75 794 PAN 58 2113 Translated from YAF 58	W. Adam et al. S. Aid et al. M. Allet et al. S. Abachi et al. (VILL, LEUV, LOUV, WISC) S. Abachi et al. F. Abe et al. R. Balest et al. I.A. Kuznetsov et al. A.V. Kuznetsov, N.V. Mikheev (CDELPHI Collab.) (H1 Collab.) (CDF Collab.) (CDF Collab.) (CLEO Collab.) (PNPI, KIAE, HARV+) (YARO)
MIZUKOSHI ABREU BHATTACH Also BHATTACH DAVIDSON KUZNETSOV KUZNETSOV	95 94O 94 94B 94 94 94B	PL B338 522 (erratum) PL B338 522 (erratum) PL B328 522 (erratum) PL B329 295 JETPL 60 315 Translated from ZETFP	J.K. Mizukoshi, O.J.P. Eboli, M.C. Gonzalez-Garcia P. Abreu et al. (DELPHI Collab.) G. Bhattacharyya, J. Ellis, K. Sridhar S. Davidson, D. Bailey, B.A. Campbell A.V. Kuznetsov, N.V. Mikheev I.A. Kuznetsov et al. (PNPI, KIAE, HARV+)
LEURER LEURER Also MAHANTA SEVERIJNS VILAIN ABE ABE ABE ABREU ACTON ADRIANI ALITTI BHATTACH BUSKULIC DERRICK	94 94B 94 94B 93C 93D 93G 93J 93E 93M 93 93 93 93F 93	PR D50 536 PR D49 333 PRL 71 1324 PL B337 128 PRL 73 611 (erratum) PL B332 465 PL B302 119 PL B304 373 PRL 71 2542 PL B316 620 PL B311 391 PRPL 236 1 NP B400 3 PR D47 3693 PL B308 425 PL B306 173	M. Leurer (REHO) M. MEHTA N. Severijns et al. (LOUV, WISC, LEUV+) P. Vilain et al. (CHARM II Collab.) T. Abe et al. (VENUS Collab.) T. Abe et al. (TOPAZ Collab.) F. Abe et al. (CDF Collab.) P. Abreu et al. (DELPHI Collab.) O. Adriani et al. (UA2 Collab.) J. Alitti et al. (UA2 Collab.) G. Bhattacharyya et al. (CALC, JADA, ICTP+) D. Buskulic et al. (ALEPH Collab.) M. Derrick et al. (ZEUS Collab.)
SEVERIJNS Also STERNER ABREU ADRIANI DECAMP IMAZATO MISHRA POLAK ACTON	93 93 93 92D 92F 92 92 92 92 91	PR D48 4470 PRL 70 4047 PRL 73 611 (erratum) PL B303 385 ZPHY C53 555 PL B292 472 PRPL 216 253 PRL 69 877 PRL 68 3499 PR D46 3871 PL B268 122	T. G. Rizzo (ANL) N. Severijns et al. (LOUV, WISC, LEUV+) N. Severijns et al. (LOUV, WISC, LEUV+) K.L. Sterner et al. (AMY Collab.) P. Abreu et al. (DELPHI Collab.) O. Adriani et al. (L3 Collab.) D. Decamp et al. (ALEPH Collab.) J. Imazato et al. (KEK, INUS, TOKY+) S.R. Mishra et al. (COLU, CHIC, FNAL+) J. Polak, M. Zralek D.P. Acton et al. (OPAL Collab.)
ACTON ADEVA AQUINO COLANGELO CUYPERS FARAGGI POLAK RIZZO WALKER ABE ABE AKRAWY GONZALEZ GRIFOLS KIM LOPEZ	91B 91D 91 91 91 91 91 90F 90H 90D 90D 90D 90	PL B273 338 PL B262 155 PL B261 280 PL B253 154 PL B259 173 MPL A6 61 NP B363 385 PR D44 202 APJ 376 51 PL B246 297 PR D41 1722 PL B246 285 PL B240 163 NP B331 244 PR D42 3293 PL B240 243 PL B241 392	D.P. Acton et al. B. Adeva et al. M. Aquino, A. Fernandez, A. Garcia P. Colangelo, G. Nardulli F. Cuypers, A.F. Falk, P.H. Frampton A.E. Faraggi, D.V. Nanopoulos J. Polak, M. Zralek T.G. Rizzo T.P. Walker et al. K. Abe et al. F. Abe et al. M.Z. Akrawy et al. M.C. Gonzalez-Garcia, J.W.F. Valle J.A. Grifols, E. Masso J.A. Grifols, E. Masso J.L. Lopez, D.V. Nanopoulos (COPAL Collab.) (CDF Collab.)
BARBIERI LANGACKER ODAKA ROBINETT ALBAJAR BAGGER BALKE BERGSTROM CUYPERS	89B 89B 89 89 88B 88 88	PR D39 1229 PR D40 1569 JPSJ 58 3037 PR D39 834 PL B209 127 PR D37 1188 PR D37 587 PL B212 386 PRL 60 1237	R. Barbieri, R.N. Mohapatra (PISA, UMD) P. Langacker, S. Uma Sankar (PENN) S. Odaka et al. (VENUS Collab.) R.W. Robinett (PSU) C. Albajar et al. (UA1 Collab.) J. Bagger, C. Schmidt, S. King (HARV, BOST) B. Balke et al. (LBL, UCB, COLO, NWES+) L. Bergstrom (STOH) F. Cuypers, P.H. Frampton (UNCCH)

DONCHESKI DONCHESKI BARTEL BEHREND DERRICK Also JODIDIO Also MOHAPATRA ADEVA BERGER STOKER ADEVA	88 88B 87B 86B 86 86 86 85 85B 85 84	PL B206 137 PR D38 412 ZPHY C36 15 PL B178 452 PL 166B 463 PR D34 3286 PR D34 1967 PR D37 237 (erratum) PR D34 909 PL 152B 439 ZPHY C27 341 PRL 54 1887 PRL 53 134	M.A. Doncheski, H. Grotch, M.A. Doncheski, H. Grotch, W. Bartel et al. H.J. Behrend et al. M. Derrick et al. M. Derrick et al. A. Jodidio et al. A. Jodidio et al. R.N. Mohapatra B. Adeva et al. C. Berger et al. D.P. Stoker et al. B. Adeva et al.	()
STOKER	85	PRL 54 1887	D.P. Stoker et al.	(LBĽ, NWES, TRIU)
BEHREND	84C	PL 140B 130	H.J. Behrend <i>et al.</i>	(CELLO Collab.)
BERGSMA CARR	83 83	PL 122B 465 PRL 51 627	F. Bergsma et al. J. Carr et al.	(CHARM Collab.) (LBL, NWES, TRIU)
BEALL SHANKER	82 82	PRL 48 848 NP B204 375	G. Beall, M. Bander, A. So O. Shanker	ni (UCI, UCLA) (TRIU)