A(1800) 1/2⁻⁻

https://pdg.lbl.gov

$$I(J^P) = 0(\frac{1}{2})$$
 Status: ***

Created: 8/11/2022 09:35

A(1800) POLE POSITION

REAL PART				
VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1809±9	SARANTSEV	19	DPWA	K N multichannel
\bullet \bullet \bullet We do not use the following d	lata for averages	, fits,	limits, e	tc. ● ● ●
1729	ZHANG	13A	DPWA	Multichannel
-2×IMAGINARY PART VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
205±16	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel
$\bullet \bullet \bullet$ We do not use the following d	lata for averages	, fits,	limits, e	tc. ● ● ●
198	ZHANG	13A	DPWA	Multichannel

*N***(1800) POLE RESIDUES**

The normalized residue is the residue divided by $\Gamma_{pole}/2.$

Normalized	residue in $N\overline{K} \rightarrow$	$\Lambda(1800) \rightarrow N\overline{K}$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.34±0.07	103 ± 8	SARANTSEV 19	DPWA	<i>KN</i> multichannel
Normalized	residue in $N\overline{K} \rightarrow$	Λ (1800) $\rightarrow \Sigma \pi$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.30±0.06	-123 ± 8	SARANTSEV 19	DPWA	KN multichannel
Normalized	residue in $N\overline{K} \rightarrow$	Λ (1800) $\rightarrow \Lambda \eta$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.06±0.03	75 ± 10	SARANTSEV 19	DPWA	$\overline{K}N$ multichannel
Normalized	residue in $N\overline{K} \rightarrow$	Λ (1800) $\rightarrow \Lambda \sigma$		
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.24±0.05	25 ± 10	SARANTSEV 19	DPWA	KN multichannel
Normalized	residue in $N\overline{K} \rightarrow$	Λ (1800) $\rightarrow \Lambda \omega$, S=	=1/2, <i>S</i> -	wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.12±0.04	-114 ± 30	SARANTSEV 19	DPWA	$\overline{K}N$ multichannel
Normalized	residue in $N\overline{K} \rightarrow$	Λ (1800) $\rightarrow \Lambda \omega$, S=	=3/2, D	-wave
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.08±0.03	-90 ± 17	SARANTSEV 19	DPWA	KN multichannel
Normalized	residue in $N\overline{K} \rightarrow$	$\Lambda(1800) \rightarrow \Sigma(138)$	5) <i>π</i>	
MODULUS	PHASE (°)	DOCUMENT ID	TECN	COMMENT
0.16±0.06	-140 ± 35	SARANTSEV 19	DPWA	KN multichannel

Page 1

Normalized residue in $N\overline{K} \rightarrow \Lambda(1800) \rightarrow N\overline{K}^*(892)$, $S=1/2$, S-wave						
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT			
0.18±0.06	65 ± 40	SARANTSEV 19	DPWA $\overline{K}N$ multichannel			
Normalized	residue in $N\overline{K} \rightarrow$	$\Lambda(1800) \rightarrow N\overline{K}^*(89)$	92), <i>S</i> =3/2, <i>D</i> -wave			
MODULUS	PHASE (°)	DOCUMENT ID	TECN COMMENT			
0.09±0.07		SARANTSEV 19	DPWA $\overline{K}N$ multichannel			

Л(1800) MASS

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
1750 to 1850 (\approx 1800) OUR ESTIN	MATE			
1811 ± 10	SARANTSEV	19	DPWA	K N multichannel
1783 ± 19	ZHANG	13A	DPWA	K N multichannel
1841 ± 10	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1725 ± 20	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
1830 ± 20	LANGBEIN	72	IPWA	K N multichannel
$\bullet~\bullet~\bullet$ We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●
1845 ± 10	MANLEY	02	DPWA	$\overline{K}N$ multichannel
1825 ± 20	GOPAL	77	DPWA	K N multichannel
1767 or 1842	¹ MARTIN	77	DPWA	K N multichannel
1780	KIM	71	DPWA	K-matrix analysis
1872 ± 10	BRICMAN	70 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$

Л(1800) WIDTH

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
150 to 250 (\approx 200) OUR ESTIMA	ΓE			
209 ± 18	SARANTSEV	19	DPWA	K N multichannel
256 ± 35	ZHANG	13A	DPWA	KN multichannel
228±20	GOPAL	80	DPWA	$\overline{K}N \rightarrow \overline{K}N$
185 ± 20	ALSTON	78	DPWA	$\overline{K}N \rightarrow \overline{K}N$
70 ± 15	LANGBEIN	72	IPWA	KN multichannel
\bullet \bullet \bullet We do not use the following	data for averages	, fits,	limits, et	
518±84	MANLEY	02	DPWA	KN multichannel
230±20	GOPAL	77	DPWA	KN multichannel
435 or 473	¹ MARTIN	77	DPWA	KN multichannel
40	KIM	71	DPWA	K-matrix analysis
100 ± 20	BRICMAN	70 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$

A(1800) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	NK	25–40 %
Г2	$\Sigma \pi$	seen
Γ ₃	$\Lambda\sigma$	(15 ±4) %
Г ₄	$\Sigma(1385)\pi$	seen

https://pdg.lbl.gov

Γ ₅	$\Lambda\eta$	0.01 to 0.10
Г ₆	N K *(892)	seen
Γ ₇	<i>NK</i> *(892), <i>S</i> =1/2, <i>S</i> -wave	
Г ₈	$N\overline{K}^{*}(892)$, $S=3/2$, D -wave	

A(1800) BRANCHING RATIOS

See "Sign conventions for resonance couplings" in the Note on \varLambda and \varSigma Resonances.

$\Gamma(NK)/\Gamma_{\text{total}}$					Γ_1/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.25 to 0.40 OUR ESTIMATE				_	
0.35 ± 0.07	SARANTSEV	19	DPWA	<u><i>K</i></u> <i>N</i> multichannel	
$0.13 {\pm} 0.06$	ZHANG	13A	DPWA	<u><i>K</i></u> <i>N</i> multichannel	
0.36 ± 0.04	GOPAL	80	DPWA	$\underline{K} N \rightarrow \underline{K} N$	
0.28 ± 0.05	ALSTON	78	DPWA	$\underline{K}N \rightarrow KN$	
0.35 ± 0.15	LANGBEIN	72	IPWA	KN multichannel	
• • • We do not use the following of	lata for averages	, fits,	limits, e	etc. ● ● ●	
0.24 ± 0.10	MANLEY	02	DPWA	<i>K</i> <i>N</i> multichannel	
0.37±0.05	GOPAL	77	DPWA	See GOPAL 80	
1.21 or 0.70	^I MARTIN	77	DPWA	<i>K</i> <i>N</i> multichannel	
0.80	KIM	71	DPWA	K-matrix analysis	
0.18 ± 0.02	BRICMAN	70 B	DPWA	$\overline{K}N \rightarrow \overline{K}N$	
$\Gamma(\Sigma\pi)/\Gamma_{total}$					Γ_2/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	
0.27±0.06	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
$\Gamma(\Lambda\sigma)/\Gamma_{\rm total}$					Г ₃ /Г
VALUE	DOCUMENT ID		TECN	COMMENT	
0.15±0.04	SARANTSEV	19	DPWA	$\overline{K}N$ multichannel	
$\Gamma(\Sigma(1385)\pi)/\Gamma_{total}$					Г₄/Г
VALUE	DOCUMENT ID		TECN	COMMENT	•,
0.09±0.04	SARANTSEV	19	DPWA	K <i>N</i> multichannel	
$\Gamma(\Lambda\eta)/\Gamma_{\text{total}}$					Γ_5/Γ
VALUE	DOCUMENT ID		TECN	COMMENT	•,
0.01 to 0.10 OUR ESTIMATE					
0.010 ± 0.005	SARANTSEV	19	DPWA	KN multichannel	
0.06 ± 0.05	ZHANG	13A	DPWA	Multichannel	
$(\Gamma_{\rm c}\Gamma_{\rm c})^{\frac{1}{2}}/\Gamma_{\rm transf}$ in $N\overline{K} \to \Lambda(18)$	$(00) \rightarrow \Sigma \pi$			([1[2	\ ¹ ⁄2/Г
	DOCUMENT ID		TECN	COMMENT	, ,.
-0.07 ± 0.02	ZHANG	13A	DPWA	Multichannel	
-0.08 ± 0.05	GOPAL	77	DPWA	$\overline{K}N$ multichannel	
• • We do not use the following of	lata for averages	, fits,	limits, e	etc. • • •	
-0.74 or -0.43	¹ MARTIN	77	DPWA	$\overline{K}N$ multichannel	
0.24	KIM	71	DPWA	K-matrix analysis	
https://pdg.lbl.gov	Page 3		Creat	ed: 8/11/2022	09:35

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \rightarrow A$	$\Lambda(1800) \rightarrow \Sigma(138)$	5) <i>π</i>	TECN	COMMENT	(Г₁Г₄) ^½ /Г
-0.09 ± 0.05	ZHANG	13A	DPWA	Multichan	nel
$+0.056\pm0.028$	² CAMERON	78	DPWA	$K^- p \rightarrow$	$\Sigma(1385)\pi$
$(\Gamma_i \Gamma_f)^{\frac{1}{2}} / \Gamma_{\text{total}} \text{ in } N\overline{K} \to \Lambda^{VALUE}$	$\Lambda(1800) \to N\overline{K}^*(8)$	392),	S=1/2	, S-wave	(Г ₁ Г ₇) ^½ /Г
-0.13 ± 0.02	ZHANG	13A	DPWA	Multichan	nel
-0.17 ± 0.03	² CAMERON	78 B	DPWA	$K^- p \rightarrow$	$N\overline{K}^*$
$\frac{(\Gamma_i \Gamma_f)^{\frac{1}{2}}}{VALUE} \wedge V_{\text{total}} \text{ in } N\overline{K} \rightarrow K$	$\Lambda(1800) \rightarrow N\overline{K}^{*}(8)$ $\frac{DOCUMENT ID}{CAMEDON}$	3 92),	S=3/2 <u>TECN</u>	, D-wave	(Г ₁ Г ₈) ^½ /Г

A(1800) FOOTNOTES

 1 The two MARTIN 77 values are from a T-matrix pole and from a Breit-Wigner fit. 2 The published sign has been changed to be in accord with the baryon-first convention.

Λ(1800) REFERENCES

SARANTSEV	19	EPJ A55 180	A.V. Sarantsev et al.	(BONN	I, PNPI)
ZHANG	13A	PR C88 035205	H. Zhang <i>et al.</i>		(KSU)
MANLEY	02	PRL 88 012002	D.M. Manley <i>et al.</i>	(BNL Crystal Ball	Collab.)
GOPAL	80	Toronto Conf. 159	G.P. Gopal		(RHEL) IJP
ALSTON	78	PR D18 182	M. Alston-Garnjost et al.	(LBL, N	1THO+) IJP
Also		PRL 38 1007	M. Alston-Garnjost et al.	(LBL, M	1THO+) IJP
CAMERON	78	NP B143 189	W. Cameron <i>et al.</i>	(RHEL	., LOIC) IJP
CAMERON	78B	NP B146 327	W. Cameron <i>et al.</i>	(RHEL	., LOIC) IJP
GOPAL	77	NP B119 362	G.P. Gopal <i>et al.</i>	(LOIC	, RHEL) IJP
MARTIN	77	NP B127 349	B.R. Martin, M.K. Pidcock,	R.G. Moorhouse (I	LOUC+) IJP
Also		NP B126 266	B.R. Martin, M.K. Pidcock		(LOUC)
Also		NP B126 285	B.R. Martin, M.K. Pidcock		(LOUC) IJP
LANGBEIN	72	NP B47 477	W. Langbein, F. Wagner		(MPIM) IJP
KIM	71	PRL 27 356	J.K. Kim		(HARV) IJP
Also		Duke Conf. 161	J.K. Kim		(HARV) IJP
Hyperon Re	sonanc	es, 1970			
BRICMAN	70B	PL 33B 511	C. Bricman, M. Ferro-Luzzi,	J.P. Lagnaux	(CERN) IJP