ϕ (1680)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

φ(1680) MASS

e^+e^- PROL)N			
VALUE (MeV)	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT
1680 ± 20 OUR		ATE			
• • • We do n	ot use th	ne following data for	r aver	ages, fit	s, limits, etc. ● ● ●
$1680^{+12}_{-13}{\pm}21$	1.8k	¹ ABLIKIM	20F	BES3	$\psi(2S) \rightarrow K^+ K^- \eta$
$1662\!\pm\!20$		² ACHASOV	20C	SND	1.3–2.0 $e^+e^- \rightarrow K^+K^-\pi^0$
1641^{+24}_{-18}		ACHASOV	19	SND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$
$1667\pm$ 5 ± 11	3k	³ IVANOV	19A	CMD3	1.59–2.007 $e^+e^- \rightarrow K^+K^-\eta$
$1700\!\pm\!23$	2k	⁴ ACHASOV	18A	SND	1.3–2.0 $e^+e^- \rightarrow K^0_S K^0_I \pi^0$
$1674\!\pm\!12\!\pm~6$	6.2k	⁵ LEES	14H	BABR	$e^+e^- \rightarrow \kappa^0_S \kappa^0_I \gamma$
$1733 \!\pm\! 10 \!\pm\! 10$		⁶ LEES	12F	BABR	10.6 $e^+e^- \rightarrow \phi \pi^+\pi^-\gamma$
$1689\!\pm7\!\pm\!10$	4.8k	⁷ SHEN	09	BELL	10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$
$1709\!\pm\!20\!\pm\!43$		⁸ AUBERT	08s	BABR	10.6 $e^+e^- ightarrow$ hadrons
1623 ± 20	948	⁹ AKHMETSHIN	03	CMD2	1.05–1.38 $e^+e^- \rightarrow \kappa^0_I \kappa^0_S$
~ 1500		¹⁰ ACHASOV	98H	RVUE	$e^+e^- \rightarrow \pi^+\pi^-\pi^0, \ \omega\pi^+\pi^-,$
~ 1900		¹¹ ACHASOV	98H	RVUE	$e^+e^- \rightarrow K^0_{\varsigma} K^{\pm} \pi^{\mp}$
$1700\!\pm\!20$		¹² CLEGG	94	RVUE	$e^+e^- \rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
1657 ± 27	367	BISELLO	91 C	DM2	$e^+e^- \rightarrow \kappa^0_{S} \kappa^{\pm} \pi^{\mp}$
1655 ± 17		¹³ BISELLO	88 B	DM2	$e^+e^- \rightarrow \ \kappa^+\kappa^-$
1680 ± 10		¹⁴ BUON	82	DM1	$e^+e^- ightarrow$ hadrons
$1677\!\pm\!12$		¹⁵ MANE	82	DM1	$e^+e^- ightarrow \ K^0_S K \pi$

¹Seen in $\psi(2S)$ decay with branching ratio $\psi(2S) \rightarrow X\eta \rightarrow K^+K^-\eta = (12.0 \pm 1.3^{+6.5}_{-6.9}) \times 10^{-6}$.

² From a fit using a vector meson dominance model with contribution from $\rho(770)$, $\omega(782)$, $\phi(1020)$, $\omega(1420)$, $\rho(1450)$.

³ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.

⁴Assuming the $K\overline{K}^*(892)$ + c.c. dynamics. Systematic uncertainties not estimated.

⁵ Using a vector meson dominance model with contribution from $\phi(1020)$, $\phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.

⁶Using events with $\pi\pi$ invariant mass less than 0.85 GeV.

- ⁷ From a fit with two incoherent Breit-Wigners.
- ⁸ From the simultaneous fit to the $K\overline{K}^*(892)$ + c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK.

⁹ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ , ω , and ϕ . Neither isospin nor flavor structure known.

¹⁰ Using data from IVANOV 81, BARKOV 87, BISELLO 88B, DOLINSKY 91, and AN-TONELLI 92.

¹¹ Using the data from BISELLO 91C.

- 12 Using BISELLO 88B and MANE 82 data.
- ¹³ From global fit including ρ , ω , ϕ and ρ (1700) assume mass 1570 MeV and width 510 MeV for ρ radial excitation.

https://pdg.lbl.gov

¹⁴ From global fit of ρ , ω , ϕ and their radial excitations to channels $\omega \pi^+ \pi^-$, $K^+ K^-$, $K^0_S K^0_L$, $K^0_S K^\pm \pi^\mp$. Assume mass 1570 MeV and width 510 MeV for ρ radial excitation, mass 1570 and width 500 MeV for ω radial excitation.

¹⁵ Fit to one channel only, neglecting interference with ω , $\rho(1700)$.

$p\overline{p}$ ANNIHILATION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
• • • We do not use the following	data for averages	, fits,	limits, e	tc. ● ● ●	
1700±8	¹ AMSLER	06	CBAR	$0.9 \ \overline{p} p \rightarrow$	$K^+ K^- \pi^0$
¹ Could also be $ ho(1700).$					

φ(1680) WIDTH

e^+e^- PRODUCTION

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

150\pm50 OUR ESTIMATE This is only an educated guess; the error given is larger than the error on the average of the published values.

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

185^{+30}_{-26} + 25 47	1.8k	¹ ABLIKIM	20F	BES3	$\psi(2S) \rightarrow K^+ K^- \eta$
$159\!\pm\!32$		² ACHASOV	20C	SND	1.3–2.0 $e^+e^- \rightarrow K^+K^-\pi^0$
103^{+26}_{-24}		ACHASOV	19	SND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$
$176\!\pm\!23\!\pm~38$	3k	³ IVANOV	19A	CMD3	1.59–2.007 $e^+e^- \rightarrow K^+K^-\eta$
$300\!\pm\!50$	2k	⁴ ACHASOV	18A	SND	1.3–2.0 $e^+e^- \rightarrow \ \kappa^0_S \kappa^0_L \pi^0$
$165\!\pm\!38\!\pm~70$	6.2k	⁵ LEES	14H	BABR	$e^+e^- \rightarrow K^0_S K^0_I \gamma$
$300\!\pm\!15\!\pm~37$		⁶ LEES	12F	BABR	10.6 $e^+e^- \rightarrow \phi \pi^+\pi^-\gamma$
$211\!\pm\!14\!\pm~19$	4.8k	⁷ SHEN	09	BELL	10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$
$322\!\pm\!77\!\pm\!160$		⁸ AUBERT	0 85	BABR	10.6 $e^+e^- ightarrow$ hadrons
$139\!\pm\!60$	948	⁹ AKHMETSHIN	03	CMD2	1.05–1.38 $e^+e^- \rightarrow K^0_I K^0_S$
$300\!\pm\!60$		¹⁰ CLEGG	94	RVUE	$e^+e^- \rightarrow K^+K^-, K_S^0 K \pi$
$146\!\pm\!55$	367	BISELLO	91 C	DM2	$e^+e^- \rightarrow K^0_{\varsigma} K^{\pm} \pi^{\mp}$
$207\!\pm\!45$		¹¹ BISELLO	88 B	DM2	$e^+e^- \rightarrow \ \kappa^+ \kappa^-$
$185\!\pm\!22$		¹² BUON	82	DM1	$e^+e^- ightarrow$ hadrons
$102\!\pm\!36$		¹³ MANE	82	DM1	$e^+e^- ightarrow K^0_S K \pi$

¹Seen in $\psi(2S)$ decay with branching ratio $\psi(2S) \rightarrow X\eta \rightarrow K^+K^-\eta = (12.0 \pm 1.3^{+6.5}_{-6.9}) \times 10^{-6}$.

² From a fit using a vector meson dominance model with contribution from $\rho(770)$, $\omega(782)$, $\phi(1020)$, $\omega(1420)$, $\rho(1450)$.

³ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.

⁴Assuming the $K\overline{K}^*(892)$ + c.c. dynamics. Systematic uncertainties not estimated.

⁵ Using a vector meson dominance model with contribution from $\phi(1020)$, $\phi(1680)$, and higher mass excitations of $\rho(770)$ and $\omega(782)$.

⁶Using events with $\pi\pi$ invariant mass less than 0.85 GeV.

⁷ From a fit with two incoherent Breit-Wigners.

- ⁸ From the simultaneous fit to the $K\overline{K}^*(892)$ + c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK.
- ⁹ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ , ω , and ϕ . Neither isospin nor flavor structure known.

https://pdg.lbl.gov

¹⁰Using BISELLO 88B and MANE 82 data.

¹¹ From global fit including ρ , ω , ϕ and ρ (1700)

¹² From global fit of ρ , ω , ϕ and their radial excitations to channels $\omega \pi^+ \pi^-$, $K^+ K^-$, $K^0_S K^0_L$, $K^0_S K^{\pm} \pi^{\mp}$. Assume mass 1570 MeV and width 510 MeV for ρ radial excita-tions, mass 1570 and width 500 MeV for ω radial excitation. ¹³ Fit to one channel only, neglecting interference with ω , ρ (1700).

$p\overline{p}$ ANNIHILATION

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the following	g data for average	s, fits,	limits, e	etc. • • •	
143±24	¹ AMSLER	06	CBAR	$0.9 \ \overline{p} p \rightarrow$	${\cal K}^+ {\cal K}^- \pi^0$
1 Could also be $ ho(1700).$					

Mode Fraction (Γ_i/Γ) $K \overline{K}^{*}(892) + c.c.$ Γ_1 seen Γ₂ $K^0_S K \pi$ seen Γ₃ $K\overline{K}$ seen $K_{1}^{0}K_{5}^{0}$ Γ4 Γ₅ $e^+e^$ seen Γ₆ $\omega \pi \pi$ not seen Γ_7 $\phi \pi \pi$ Γ₈ $K^{+}K^{-}\pi^{+}\pi^{-}$ seen Γg $\eta \phi$ seen $K^+ K^- \eta$ Γ₁₀ Γ_{11} ${\eta \gamma \over K^+ K^- \pi^0}$ seen Γ₁₂

ϕ (1680) DECAY MODES

$\phi(1680) \Gamma(i)\Gamma(e^+e^-)/\Gamma(total)$

This combination of a partial width with the partial width into $e^+e^$ and with the total width is obtained from the integrated cross section into channel (I) in e^+e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(I)$ or the branching ratio $\Gamma(I)/total$.

$\Gamma(K_I^0 K_S^0) \times \Gamma(e^+)$	e)/Γ _{total}						Γ₄Γ₅/Γ
VALUE (eV)	EVTS	DOCUMEN	ID T		TECN	COMMENT	
• • • We do not use th	ne following	data for av	erages,	fits, l	imits, e	etc. • • •	
$14.3 \pm 2.4 \pm 6.2$	6.2k	¹ LEES		14H	BABR	$e^+e^- \rightarrow$	$\kappa^0_{S} \kappa^0_{I} \gamma$
¹ Using a vector meso higher mass excitation	on dominant ions of $ ho(770)$	te model w (78	ith con 32).	tribut	ion fro	m ϕ (1020),	$\phi(1680)$, and
$\Gamma(\phi\pi\pi)$ × $\Gamma(e^+e^-)$	-)/Γ _{total}						Γ ₇ Γ ₅ /Γ
VALUE (10^{-2} keV)	DO	CUMENT ID		TECN	CON	IMENT	
$\bullet \bullet \bullet$ We do not use the	ne following	data for av	erages,	fits, l	imits, e	etc. • • •	
$4.2 {\pm} 0.2 {\pm} 0.3$	LEI	ES	12F	BABI	R 10.6	$b e^+e^- \rightarrow$	$\phi \pi^+ \pi^- \gamma$
https://pdg.lbl.gov		Page 3			Creat	ed: 8/11/	2022 09:37

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

$\Gamma(\eta\phi) \times \Gamma(e^+\epsilon)$	e ⁻)/Γ _{total}					Γ9Γ5/Γ
VALUE (eV)	EVTS	DOCUMENT II	כ	TECN	COMMENT	
• • • We do not us	e the following	g data for averag	ges, fits, l	limits, e	etc. • • •	
$94 \pm 13 \pm 15$	3k	¹ IVANOV	19A	CMD3	$1.59-2.007 \epsilon$	$e^+e^- \rightarrow$

¹ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution.

$\phi(1680) \Gamma(i)\Gamma(e^+e^-)/\Gamma^2(total)$

This combination of a branching ratio into channel (i) and branching ratio into e^+e^- is directly measured and obtained from the cross section at the peak. We list only data that have not been used to determine the branching ratio into (i) or e^+e^- .

$\Gamma(K_I^0 K_S^0) / \Gamma_{\text{total}} \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$

DOCUMENT ID _____ TECN_ COMMENT VALUE (units 10^{-6}) EVTS • • • We do not use the following data for averages, fits, limits, etc. • • ¹ AKHMETSHIN 03 CMD2 1.05–1.38 $e^+e^- \rightarrow \kappa^0_L \kappa^0_S$ 948 0.131 ± 0.059

¹ From the combined fit of AKHMETSHIN 03 and MANE 81 also including ρ , ω , and ϕ . Neither isospin nor flavor structure known. Recalculated by us.

$\Gamma(K\overline{K}^*(892) + \text{c.c.})/\Gamma_{\text{total}} \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$

VALUE (units 10^{-6})	EVTS	DOCUMENT	ID	TECN	COMMENT
• • • We do not u	ise the f	ollowing data f	or aver	ages, fits	s, limits, etc. ● ● ●
$1.15\!\pm\!0.16\!\pm\!0.01$		¹ AUBERT	08S	BABR	10.6 $e^+e^- \rightarrow \ \kappa \overline{\kappa}^*(892)\gamma +$
3.29±1.57	367	² BISELLO	91 C	DM2	c.c. 1.35–2.40 $e^+e^- \rightarrow K_S^0 K^{\pm} \pi^{\mp}$
1 From the simu	Itanoour	fit to the $K\overline{I}$	<u>k</u> *(802		and dm data from AUBERT 085

From the simultaneous fit to the $K\overline{K}^*(892)$ + c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK.

²Recalculated by us with the published value of B($K\overline{K}^*(892) + \text{ c.c.}$) × $\Gamma(e^+e^-)$.

$\Gamma(\phi \pi \pi) / \Gamma_{\text{total}} \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$

VALUE (units 10⁻⁷) EVTS DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. • • 09 BELL 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$ $1.86 \pm 0.14 \pm 0.21$ 4.8k ¹ SHEN ¹ Multiplied by 3/2 to take into account the $\phi \pi^0 \pi^0$ mode. Using B($\phi \rightarrow K^+ K^-$) = $(49.2 \pm 0.6)\%$. $\Gamma_9/\Gamma \times \Gamma_5/\Gamma$

$$\Gamma(\eta\phi)/\Gamma_{\rm total}$$
 × $\Gamma(e^+e^-)/\Gamma_{\rm total}$

VALUE (units 10^{-7})	EVTS	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following	g data for averages	s, fits,	limits, e	etc. • • •
$5.64^{+1.74}_{-1.80}$		ACHASOV	19	SND	$e^+e^- \rightarrow \pi^+\pi^-\pi^0\eta$
$5.3 \pm 0.6 \pm 0.9$	3k	¹ IVANOV	19A	CMD3	$\begin{array}{c} 1.59-2.007 \ e^+ \ e^- \rightarrow \\ \kappa^+ \ \kappa^- \ n \end{array}$
$4.3 \pm 1.0 \pm 0.9$		² AUBERT	0 8s	BABR	10.6 $e^+e^- \rightarrow \phi \eta \gamma$

¹ From a fit with coherent interference of the $\phi(1680)$ with a non-resonant contribution. ² From the simultaneous fit to the $K\overline{K}^*(892)$ + c.c. and $\phi\eta$ data from AUBERT 08S using the results of AUBERT 07AK.

 $\Gamma_4/\Gamma \times \Gamma_5/\Gamma$

 $\Gamma_1/\Gamma \times \Gamma_5/\Gamma$

 $\Gamma_7/\Gamma \times \Gamma_5/\Gamma$

ϕ (1680) BRANCHING RATIOS

$\Gamma(K\overline{K}^*(892)+c$	с.)/Г(<i>К</i> ⁰ с	Κπ)				Γ_1/Γ_2
VALUE		DOCUMENT IL)	TECN	COMMENT	-
dominant		MANE	82	DM1	$e^+e^- \rightarrow$	$\kappa^0_S \kappa^{\pm} \pi^{\mp}$
$\Gamma(\overline{K}\overline{K})/\Gamma(\overline{K}\overline{K}^*$	(892)+c.c	.)				Γ_3/Γ_1
VALUE		DOCUMENT IL)	TECN	COMMENT	
• • • We do not us	se the followi	ng data for averag	es, fit	s, limits,	etc. • • •	
0.07 ± 0.01		BUON	82	DM1	e^+e^-	
$\Gamma(\omega\pi\pi)/\Gamma(\kappa\overline{K})$	*(892)+c.e	: .)				Γ_6/Γ_1
VALUE		DOCUMENT IL)	TECN	COMMENT	
<0.10		BUON	82	DM1	e^+e^-	
$\Gamma(\eta\phi)/\Gamma_{total}$						٦/و٦
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT	
seen	35	¹ ACHASOV	14	SND	1.15–2.00 e	$^+e^- \rightarrow \eta\gamma$
1 From a phenom $\phi(1680)$ masses	nenological m and widths	odel based on veo from the PDG 12.	ctor m	eson do	minance with	ho(1450) and
$\Gamma(\eta\phi)/\Gamma(K\overline{K}^*)$	892)+c.c.)					Г9/Г1
VALUE	· ,	DOCUMENT ID		TECN	COMMENT	
• • • We do not us	se the followi	ng data for averag	es, fit	s, limits,	etc. • • •	
pprox 0.37		¹ AUBERT	0 85	BABR	10.6 e ⁺ e ⁻	ightarrow hadrons
1 From the fit inc	luding data f	rom AUBERT 074	ĸĸ.			
$\Gamma(\eta\gamma)/\Gamma_{total}$						Г ₁₁ /Г
VALUE	EVTS	DOCUMENT ID		TECN	<u>COMMENT</u>	-
seen	35	¹ ACHASOV	14	SND	1.15–2.00 e ⁻	$+ e^- \rightarrow \eta \gamma$

¹ From a phenomenological model based on vector meson dominance with $\rho(1450)$ and $\phi(1680)$ masses and widths from the PDG 12.

ϕ (1680) REFERENCES

ABLIKIM	20F	PR D101 032008	M Ablikim <i>et al</i>	(BESIII	Collah)
	201	EDI (20 1130	M N Achasov at al	(SND	Collab.)
ACHAGOV	200		M.N. Achasov et al.	(SND	
ACHASOV	19	PR D99 112004	M.N. Achasov <i>et al.</i>	(SND	Collab.)
IVANOV	19A	PL B798 134946	V.L. Ivanov <i>et al.</i>	(CMD-3	Collab.)
ACHASOV	18A	PR D97 032011	M.N. Achasov <i>et al.</i>	(SND	Collab.)
ACHASOV	14	PR D90 032002	M.N. Achasov <i>et al.</i>	(SND	Collab.)
LEES	14H	PR D89 092002	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
LEES	12F	PR D86 012008	J.P. Lees <i>et al.</i>	(BABAR	Collab.)
PDG	12	PR D86 010001	J. Beringer <i>et al.</i>	(PDG	Collab.)
SHEN	09	PR D80 031101	C.P. Shen et al.	(BELLE	Collab.)
AUBERT	08S	PR D77 092002	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert <i>et al.</i>	(BABAR	Collab.)
AMSLER	06	PL B639 165	C. Amsler <i>et al.</i>	(Crystal Barrel	Collab.)
AKHMETSHIN	03	PL B551 27	R.R. Akhmetshin <i>et al.</i>	(Novosibirsk CMD-2	Collab.)
Also		PAN 65 1222	E.V. Anashkin, V.M. Aulche	nko, R.R. Akhmetshir	ı ,
		Translated from YAF 65	1255.		

https://pdg.lbl.gov

ACHASOV	98H	PR D57 4334	N.N. Achasov, A.A. Kozhevn	iikov
CLEGG	94	ZPHY C62 455	A.B. Clegg, A. Donnachie	(LANC, MCHS)
ANTONELLI	92	ZPHY C56 15	A. Antonelli <i>et al.</i>	(DM2 Collab.)
BISELLO	91C	ZPHY C52 227	D. Bisello <i>et al.</i>	(DM2 Collab.)
DOLINSKY	91	PRPL 202 99	S.I. Dolinsky <i>et al.</i>	(NOVO)
BISELLO	88B	ZPHY C39 13	D. Bisello <i>et al.</i>	(PADO, CLER, FRAS+)
BARKOV	87	JETPL 46 164	L.M. Barkov <i>et al.</i>	(NOVO)
		Translated from ZETR	P 46 132.	· · · ·
BUON	82	PL 118B 221	J. Buon <i>et al.</i>	(LALO, MONP)
MANE	82	PL 112B 178	F. Mane <i>et al.</i>	(LALO)
IVANOV	81	PL 107B 297	P.M. Ivanov <i>et al.</i>	(NOVO)
MANE	81	PL 99B 261	F. Mane <i>et al.</i>	(ÒRSAY)
				· · · ·

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)