$$\psi_2$$
(3823)

$$I^{G}(J^{PC}) = 0^{-}(2^{-})$$

I, J, P need confirmation.

was $\psi(3823), X(3823)$ Seen by BHARDWAJ 13 in $B
ightarrow \chi_{c1} \gamma K$ and ABLIKIM 15S in $e^+e^-
ightarrow \pi^+\pi^-\gamma\chi_{c1}$ decays as a narrow peak in the invariant mass distribution of the $\chi_{c1}\gamma$ system. Properties consistent with the $\psi_2(1^3 D_2) c \overline{c}$ state.

$\psi_2(3823)$ MASS

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT	
3823.7 ±0.5 OUR	AVERAGE	Error includes sca	le fac	tor of 1.	1.	
$3824.08 \!\pm\! 0.53 \!\pm\! 0.14$	137	¹ AAIJ	20S	LHCB	$B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$	
$3821.7 \pm 1.3 \pm 0.7$	19 ± 5	² ABLIKIM	15S	BES3	$e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$	
$3823.1 \ \pm 1.8 \ \pm 0.7$	33 ± 10	³ BHARDWAJ	13	BELL	$B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$	
1 Using the measured $m_{\psi_{2}(3823)}-m_{\psi(25)}=137.98\pm0.53\pm0.14$ MeV.						

² From a simultaneous unbinned maximum likelihood fit of $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$ data

(the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \rightarrow \chi_{c1}\gamma$ and $\psi_2(3823) \rightarrow \chi_{c1}\gamma$ together, with floating mass scale offset for $\psi(2S)$, floating $\psi_2(3823)$ mass, and zero $\psi_2(3823)$ width, resulting in a significance of 5.9 σ when including systematic uncertainties. ³ From a simultaneous fit to $B^{\pm} \rightarrow (\chi_{c1}\gamma)K^{\pm}$ and $B^0 \rightarrow (\chi_{c1}\gamma)K^0_S$ with significance 4.0 σ including systematics. Corrected for the measured $\psi(2S)$ mass using $B \rightarrow \psi(2S)K_{c1}\gamma$ ($\chi_{c1}\gamma$) K decays

 $\psi(2S) K \rightarrow (\gamma \chi_{c1}) K$ decays.

$m_{\psi_2(3823)} - m_{\psi(2S)}$

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT • • • We do not use the following data for averages, fits, limits, etc. • • • 1 AAIJ 20s LHCB $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ $137.98 \!\pm\! 0.53 \!\pm\! 0.14$ 137 ¹AAIJ 20s also reports $m_{\chi_{c1}(3872)} - m_{\psi_2(3823)} =$ 47.50 \pm 0.53 \pm 0.13 MeV.

$\psi_2(3823)$ WIDTH

VALUE (MeV)	CL%	DOCUMENT ID		TECN	COMMENT
< 5.2	90	¹ AAIJ	20s	LHCB	$B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$
• • • We do not i	use the follov	ving data for avera	ges, fi	ts, limits	s, etc. ● ● ●
<16	90	² ABLIKIM	15S	BES3	$e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$
<24	90	³ BHARDWAJ	13	BELL	$B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$
1 AAIJ 20S also	provides a lii	mit of < 6.6 MeV	with 9	5% CL.	
² From a fit of <i>e</i>	$^+e^- \rightarrow \pi^-$	$^{+}\pi^{-}\chi_{c1}\gamma$ data (t	he π^+	π^- reco	oil mass) taken at \sqrt{s} values
of 4.23, 4.26,	4.36, 4.42, a	nd 4.60 GeV to a	Breit-\	Nigner f	unction with the mass fixed
from the likelik	nood fit abov	e Gaussian resolut	ion sn	nearing	and floating width

³ From a simultaneous fit to $B^{\pm} \rightarrow (\chi_{c1}\gamma)K^{\pm}$ and $B^{0} \rightarrow (\chi_{c1}\gamma)K^{0}_{S}$ with significance 4.0 σ including systematics.

$\psi_2(3823)$ DECAY MODES

Branching fractions are given relative to the one **DEFINED AS 1**.

Mode	Fraction (Γ_i/Γ)	Confidence level
$J/\psi(1S)\pi^+\pi^-$	<0.06	90%
$J/\psi(1S)\pi^0\pi^0$	<0.11	90%
$J/\psi(1S)\pi^0$	<0.030	90%
$J/\psi(1S)\eta$	<0.14	90%
$\chi_{c0}\gamma$	<0.24	90%
$\chi_{c1}\gamma$	DEFINED AS 1	
$\chi_{c2}\gamma$	$0.28 \begin{array}{c} +0.14 \\ -0.11 \end{array}$	
	Mode $J/\psi(1S)\pi^{+}\pi^{-}$ $J/\psi(1S)\pi^{0}\pi^{0}$ $J/\psi(1S)\pi^{0}$ $J/\psi(1S)\eta$ $\chi_{c0}\gamma$ $\chi_{c1}\gamma$ $\chi_{c2}\gamma$	ModeFraction (Γ_i/Γ) $J/\psi(1S)\pi^+\pi^-$ <0.06

$\psi_2(3823)$ BRANCHING RATIOS

$\Gamma(J/\psi(1S)\pi^+\pi^-)/$	Γ _{total}				Γ ₁ /	Γ
VALUE	EVTS	DOCUMENT	ID	TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the	e following da	ita for average	es, fits,	limits,	etc. ● ● ●	
not seen		¹ ABLIKIM	210	BES3	$e^+e^- \rightarrow \pi^+\pi^- X$	
seen	137 ± 26	AAIJ	20S	LHCB	$B^+ \rightarrow J/\psi \pi^+ \pi^- K^-$	+
¹ From a simultaneou butions of seven dec	s unbinned m cay channels in	aximum likelih n the process	e^+e^-	t of the $\rightarrow \pi^+$	$\pi^+\pi^-$ recoil mass dist $\pi^- X$.	ri-
$\Gamma(1/a/(1C) - +)/$					Γ./Γ	-

$I(J/\psi(15)\pi,\pi)$)/' ($\chi_{c1}\gamma$)				×1/	6
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.06	90	¹ ABLIKIM	210	BES3	$e^+e^- \rightarrow \pi^+\pi^- X$	
1					1	

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$.

$\Gamma(J/\psi(1S)\pi^0\pi^0)/$	′Γ(χ _{c1} γ)					Γ_2/Γ_6
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.11	90	¹ ABLIKIM	210	BES3	$e^+e^- \rightarrow$	$\pi^+\pi^-X$

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$.

$\Gamma(J/\psi(1S)\pi^0)/\Gamma(\chi_{c1}\gamma)$					
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
<0.03	90	¹ ABLIKIM	210	BES3	$e^+e^- \rightarrow \pi^+\pi^- X$
1					

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$.

$\Gamma(J/\psi(1S)\eta)/\Gamma(\chi_{c1}\gamma)$						
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.14	90	¹ ABLIKIM	210	BES3	$e^+e^- \rightarrow \pi^+\pi^- X$	
-						

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$.

https://pdg.lbl.gov

Created: 8/11/2022 09:38

Citation: R.L. Workman et al. (Particle Data Group), Prog.Theor.Exp.Phys. 2022, 083C01 (2022)

 $\Gamma(\chi_{c0}\gamma)/\Gamma_{total}$ Γ_5/Γ DOCUMENT ID TECN COMMENT • We do not use the following data for averages, fits, limits, etc. • ¹ ABLIKIM 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ not seen ¹From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. $\Gamma(\chi_{c1}\gamma)/\Gamma_{total}$ Γ6/Γ VALUE <u>DOCUMENT I</u>D TECN COMMENT EVTS 13 BELL $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$ ¹ BHARDWAJ 33 + 10seen • We do not use the following data for averages, fits, limits, etc. 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ ² ABLIKIM 63 ± 9 seen ³ ABLIKIM 210 BES3 $e^+e^- \rightarrow \pi^0 \pi^0 X$ 16 ± 5 seen ¹BHARDWAJ 13 reports $B(B^{\pm} \rightarrow \psi_2(3823) K^{\pm}) \times B(\psi_2(3823) \rightarrow \gamma \chi_{c1}) = (9.7 \pm$ $2.8 \pm 1.1) \times 10^{-6}$ with statistical significance 3.8 σ . ² From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. Signal has a 11.8 σ significance. ³ From a fit of the invariant $\pi^0 \pi^0$ recoil-mass distribution. Signal has a 4.3 σ significance. $\Gamma(\chi_{c0}\gamma)/\Gamma(\chi_{c1}\gamma)$ Γ_5/Γ_6 TECN COMMENT VALUE 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ < 0.24 ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. $\Gamma(\chi_{c2}\gamma)/\Gamma_{total}$ Γ_7/Γ DOCUMENT ID TECN COMMENT VALUE • • • We do not use the following data for averages, fits, limits, etc. • • • 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ ¹ ABLIKIM seen ² ABLIKIM 155 BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c2}\gamma$ ³ BHARDWAJ 13 BELL $B^{\pm} \rightarrow \chi_{c2}\gamma K^{\pm}$ not seen not seen ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. Signal has a 3.2 σ significance. ² From a simultaneous unbinned maximum likelihood fit of $e^+e^- \rightarrow \pi^+\pi^-\chi_{c2}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \rightarrow \chi_{C2}\gamma$ and $\psi_2(3823) \rightarrow \chi_{C2}\gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width. ³BHARDWAJ 13 reports B($B^{\pm} \rightarrow \psi_2(3823) \kappa^{\pm}$) × B($\psi_2(3823) \rightarrow \gamma \chi_{c2}$) < 3.6 × 10^{-6} at 90% CL. $\Gamma(\chi_{c2}\gamma)/\Gamma(\chi_{c1}\gamma)$ Γ7/Γ6 <u>CL%</u>EVTS DOCUMENT ID TECN COMMENT 210 BES3 $e^+e^-_{\pi^+\pi^-}\chi_{c2}\gamma$ $0.28^{+0.14}_{-0.11}\pm0.02$ 9 ± 4 ¹ ABLIKIM

Page 3

Created: 8/11/2022 09:38

https://pdg.lbl.gov

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.42	90	² ABLIKIM	15s	BES3	$e^+e^{\perp} \rightarrow$
<0.41	90	BHARDWAJ	13	BELL	$ \begin{array}{c} \pi^{+}\pi^{-}\chi_{c2}\gamma \\ B^{\pm} \rightarrow \\ \chi_{c1/c2}\gamma K^{\pm} \end{array} $

¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. ² From a simultaneous unbinned maximum likelihood fit of $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1(2)}\gamma$

data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \rightarrow \chi_{c1(2)}\gamma$ and $\psi_2(3823) \rightarrow \chi_{c1(2)}\gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width.

$\psi_2(3823)$ REFERENCES

ABLIKIM	210	PR D103 L091102	M. Ablikim <i>et al.</i>	(BESIII Collab.)
AAIJ	20S	JHEP 2008 123	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABLIKIM	15S	PRL 115 011803	M. Ablikim <i>et al.</i>	(BESIII Collab.)
BHARDWAJ	13	PRL 111 032001	V. Bhardwaj <i>et al.</i>	(BELLE Collab.)