$$\psi$$
(4360)

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

also known as Y(4360); was X(4360)

This state shows properties different from a conventional $q\overline{q}$ state. A candidate for an exotic structure. See the review on non- $q\overline{q}$ states.

Seen in radiative return from e^+e^- collisions at $\sqrt{s} = 9.54-10.58$ GeV by AUBERT 07S, WANG 07D, and LEES 14F. See also the review on "Spectroscopy of mesons containing two heavy quarks."

ψ(4360) MASS

https://pdg.lbl.gov

¹From a three-resonance fit to the Born cross section in the range $\sqrt{s} = 4.008-4.698$ GeV.

² From a five-resonance fit to the cross section for $e^+e^- \rightarrow \gamma\gamma J/\psi \rightarrow \gamma\gamma \ell^+\ell^-$.

³ From a fit of the measured cross section in the range $\sqrt{s} = 3.808$ –4.600 GeV.

⁴ From a three-resonance fit.

⁵ From a two-resonance fit. Supersedes WANG 07D.

 $\frac{6}{2}$ From a two-resonance fit.

⁷ From a fit to the cross section for $e^+e^- \rightarrow \pi^+\pi^-\psi(2S) \rightarrow 2(\pi^+\pi^-)\ell^+\ell^-$ obtained from 16 center-of-mass energies between 4.008 and 4.600 GeV and comprising 5.1 fb $^{-1}$. Superseded by ABLIKIM 21AJ.

⁸ From a three-resonance fit. ⁹ From a combined fit of BELLE, BABAR and BES3 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and $e^+e^- \rightarrow$ $\pi^+\pi^-\psi(2S)$ data.

 $\overset{10}{}$ From a combined fit of AUBERT 07S and WANG 07D data with two resonances.

 11 From a single-resonance fit. Systematic errors not estimated.

 ψ (4360) MASS (MeV)

ψ(4360) WIDTH

VALUE (Me\	/)	EVTS	DOCUMENT	ID	TECN	COMMENT	
115 ±13	OUR A	VERAGE	Error include	es sca	le factor	of 2.2. See the ideogram below.	
143.3 ± 10	$.0\pm$ 0.5		¹ ABLIKIM	21AJ	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$	
51.1 ± 17	$.6\pm$ 1.9		² ABLIKIM	21AK	BES3	$e^+e^- \rightarrow \gamma \chi_{c2} \rightarrow \gamma \gamma J/\psi$	
135.8 ± 60	$.8 \pm 22.5$		³ ABLIKIM	200	BES3	$e^+e^- \rightarrow \eta J/\psi$	
101.4^{+25}_{-19}	$\frac{3}{7} \pm 10.2$		⁴ ABLIKIM	17 B	BES3	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$	
$139.5 \substack{+16 \\ -20}$	$^{2}_{.6}\pm$ 0.6		ABLIKIM	17 G	BES3	$e^+e^- \rightarrow \pi^+\pi^-h_c$	
103 ± 9	\pm 5	279	⁵ WANG	15A	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$	
94 ± 32	± 13	37	⁶ LEES	14F	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$	
• • • We	do not us	e the follo	owing data for	avera	ges, fits,	limits, etc. • • •	
84.2 ± 12	$.5\pm$ 2.1		⁷ ABLIKIM	17v	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$	
94.2± 7	.3± 2.0		⁸ ZHANG	17 B	RVUE	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$	
96.0± 6	.7± 2.7		⁹ ZHANG	17 C	RVUE	$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$	
$103 \ +17 \\ -15$	± 11	74	¹⁰ LIU	08н	RVUE	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$	
172 ±33			¹¹ AUBERT	07s	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$	
74 ± 15	± 10	47	⁶ WANG	07 D	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$	
¹ From	a three-re	sonance f	it to the Born	cros	s section	in the range $\sqrt{s} = 4.008 - 4.698$	
GeV.							
² From a	a five-reso	nance fit	to the cross se	ection	for $e^+ \epsilon$	$e^- \rightarrow \gamma \gamma J/\psi \rightarrow \gamma \gamma \ell^+ \ell^$	
3 From a fit of the measured cross section in the range $\sqrt{s}=$ 3.808–4.600 GeV.							
⁴ From a	three-res	sonance fi	t.		07-		
^ο From a 6 Γιαστ	two-reso	nance fit.	Supersedes W	ANG	U7D.		
⁷ From a	a two-reso a fit to the	cross sec	tion for e^+e^-	$\rightarrow \pi$	$+\pi^{-}\eta_{0}$	$(25) \rightarrow 2(\pi^+\pi^-)\ell^+\ell^-$ obtained	

or $e^+\,e^-
ightarrow\,\pi^+\,\pi^-\,\psi(2S)
ightarrow\,2(\pi^+\,\pi^-)\,\ell^+\,\ell^-$ obtaine from 16 center-of-mass energies between 4.008 and 4.600 GeV and comprising 5.1 fb $^{-1}$. Superseded by ABLIKIM 21AJ.

 8 From a three-resonance fit.

⁹ From a combined fit of BELLE, BABAR and BES3 $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ and $e^+e^- \rightarrow$ $\pi^+\pi^-\psi(2S)$ data.

¹⁰ From a combined fit of AUBERT 07S and WANG 07D data with two resonances.

¹¹ From a single-resonance fit. Systematic errors not estimated.

https://pdg.lbl.gov

ψ (4360) DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ_1	e ⁺ e ⁻	
Γ2	$h_c \pi^+ \pi^-$	seen
Г ₃	$J/\psi \pi^+\pi^-$	
Γ ₄	$\psi(2S)\pi^+\pi^-$	seen
Γ ₅	$\psi(3770)\pi^{+}\pi^{-}$	possibly seen
Г ₆	$\psi_2(3823)\pi^+\pi^-$	possibly seen
Γ ₇	$J/\psi\eta$	seen
Г ₈	$D^0 D^{*-} \pi^+$	
۲ ₉	$D_1(2420)D + c.c.$	possibly seen
Γ ₁₀	$p \overline{p} \eta$	not seen
Γ_{11}	$p \overline{p} \omega$	not seen
Γ_{12}	$\chi_{c1\gamma}$	
Γ ₁₃	$\chi_{c2}\gamma$	

 ψ (4360) Γ (i) × Γ (e^+e^-)/ Γ (total)

$\Gamma(h_c \pi^+ \pi^-) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}}$						
VALUE (eV)	DOCUMENT ID		TECN	COMMENT	_	
$11.6^{+5.0}_{-4.4}{\pm}1.9$	ABLIKIM	17G	BES3	$e^+e^- \rightarrow \pi^+\pi^-h_c$		
https://pdg.lbl.gov	Page 3		Creat	ted: 8/11/2022 09:38	}	

$\Gamma(\psi(2S)\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{4}\Gamma_{1}/\Gamma$							
VALUE (eV)	EVTS	DOCUMENT ID		TECN	COMMENT		
• • • We do no	t use th	e following data for	averag	ges, fits,	limits, etc. • • •		
10.7 ± 4.1		¹ ABLIKIM	21AJ	BES3	$e^+e^- ightarrow \pi^+\pi^-\psi(2S)$		
20.7 ± 2.5		² ABLIKIM	21AJ	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$		
9.9 ± 4.1		³ ABLIKIM	21AJ	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$		
19.4 ± 2.0		⁴ ABLIKIM	21AJ	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$		
$7.3 {\pm} 2.8$		⁵ ABLIKIM	19K	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$		
11.0 ± 3.8		⁶ ABLIKIM	19K	BES3	$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$		
$9.2\!\pm\!0.6\!\pm\!0.6$	279	⁷ WANG	15A	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$		
$10.9\!\pm\!0.6\!\pm\!0.7$	279	⁸ WANG	15A	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$		
$6.0\!\pm\!1.0\!\pm\!0.5$	37	⁵ LEES	14F	BABR	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$		
$7.2\!\pm\!1.0\!\pm\!0.6$	37	⁶ LEES	14F	BABR	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$11.1^{+1.3}_{-1.2}$	74	⁹ LIU	08н	RVUE	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$		
12.3 ± 1.2	74	¹⁰ LIU	08H	RVUE	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$10.4\!\pm\!1.7\!\pm\!1.5$	47	⁵ WANG	07 D	BELL	10.58 $e^+e^- \to \gamma \pi^+\pi^-\psi(2S)$		
$11.8\!\pm\!1.8\!\pm\!1.4$	47	⁶ WANG	07 D	BELL	10.58 $e^+e^- \rightarrow \gamma \pi^+\pi^-\psi(2S)$		

 1 Solution I of four equivalent solutions in a fit using three interfering resonances. Super-sedes ABLIKIM 19K.

² Solution II of four equivalent solutions in a fit using three interfering resonances. Supersedes ABLIKIM 19κ.
 ³ Solution III of four equivalent solutions in a fit using three interfering resonances. Su-

- ³ Solution III of four equivalent solutions in a fit using three interfering resonances. Supersedes ABLIKIM 19K.
- ⁴Solution IV of four equivalent solutions in a fit using three interfering resonances. Supersedes ABLIKIM 19κ.
- ⁵Solution I of two equivalent solutions in a fit using two interfering resonances.

⁶Solution II of two equivalent solutions in a fit using two interfering resonances.

- ⁷Solution I of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.
- ⁸ Solution II of two equivalent solutions from a fit using two interfering resonances. Supersedes WANG 07D.

 9 Solution I in a combined fit of AUBERT 07S and WANG 07D data with two resonances. 10 Solution II in a combined fit of AUBERT 07S and WANG 07D data with two resonances.

 3 Solution 3 of three equivalent fit solutions using three resonant structures.

https://pdg.lbl.gov

$\Gamma(\chi_{c2}\gamma) \times \Gamma(e^+e^-)$	⁻)/Γ _{tot}	al DOCUMENT I)	TECN	$\Gamma_{13}\Gamma_{1}/I$
<u>//10</u>	00	<u>1 нлм</u>	15	BELL	$\frac{1058}{10} + 0^{-} \rightarrow \chi = 0$
$1 \text{ Using } B(n \to \infty \alpha)$	90 — (30 41	1 + 0.21)%	15	DLLL	$10.56 e^{-\gamma} e^{-\gamma} \chi_{C2}^{\gamma\gamma}$
	- (35.11				
	$\psi(4)$	360) BRANCHII	NG RA	ATIOS	
$\Gamma(h_c \pi^+ \pi^-) / \Gamma_{\text{total}}$		DOCUMENT IL)	TECN	Г2/ І <u>соммент</u>
seen		ABLIKIM	17G	BES3	$e^+e^- \rightarrow \pi^+\pi^-h_c$
$\Gamma(\psi(2S)\pi^+\pi^-)/\Gamma_{to}$	otal			CN	Γ 4/Ι
VALUE		1 ABLIKIM 1	<u> </u>	<u>cn co</u>	$\frac{MMENI}{2} = \sqrt{\pi^{+} \pi^{-}} \sqrt{2S}$
¹ From a fit to the cro from 16 center-of-m	ss sectio ass ener	n for $e^+e^- ightarrow \pi^+$ gies between 4.008	$\pi^{-}\psi($ and 4.6	$(2S) \rightarrow$ (2S) \rightarrow (2S) \rightarrow (2S) \rightarrow	$2(\pi^+\pi^-)\ell^+\ell^-$ obtaine and comprising 5.1 fb ⁻¹
$\Gamma(\psi(2S)\pi^+\pi^-)/\Gamma($	$J/\psi\pi^+$	-π-) <u>DOCUMENT IE</u>)	TECN	Г4/Г : <u>соммент</u>
$\bullet \bullet \bullet$ We do not use the	e follow	ing data for averag	es, fits,	limits,	etc. • • •
$(0.81 \pm 0.12 \pm 0.13)$ to $15 \pm 15)$	$(42 \pm$	¹ ZHANG	17C	RVUE	$e^+e^- ightarrow \pi^+\pi^- J/\psi$ or $\psi(2S)$
1 From a combined fit $\pi^+\pi^-\psi(2S)$ data.	of BELI	E, BABAR and BE	ES3 e ⁺	$e^- \rightarrow r$	$\pi^+\pi^- J/\psi$ and $e^+e^$
$\Gamma(\psi(3770)\pi^+\pi^-)/1$	total	DOCUMENT II)	TECN	COMMENT
possibly seen		¹ ABLIKIM	19AF	R BES3	$e^+e^- \rightarrow \pi^+\pi^- D\overline{D}$
¹ Observe $e^+e^- \rightarrow$ establish if continuu	$\pi^+\pi^-$ im or res	$\sqrt[-]{\psi(3770)}$ at \sqrt{s} = sonant.	= 4.26,	4.36, a	nd 4.42 GeV but canno
$\Gamma(\psi_2(3823)\pi^+\pi^-))$	/Γ _{total}	DOCUMENT II)	TECN	COMMENT
possibly seen	19	¹ ABLIKIM	15 S	BES3	$e^+e^{\pi^+\pi^-\chi_{c1}\gamma}$
1 From a fit of $e^{+}e^{-}$ \sqrt{s} values of 4.23, 4	$^{-} \rightarrow \pi^{+}$ 1.26, 4.3	$\pi^{-}\psi_{2}(3823), \psi_{2}(6, 4.42, and 4.60)$	(3823) GeV to	$ ightarrow \chi_{c1}$ the ψ (4	γ cross sections taken a 360) line shape.
$\Gamma(J/\psi\eta)/\Gamma_{ ext{total}}$					Γ ₇ /Ι
VALUE		DOCUMENT ID)	TECN	<u>COMMENT</u>
¹ With a significance	of 6.0 σ	⁺ ABLIKIM	200	BES3	$e^+ e^- ightarrow \eta J/\psi$
	CI 0.0 0				
$(D^{\circ}D^{+}\pi')/ _{\text{total}}$		(e'e)/I _{total})	TECN	I8/IXI1/I
<0.72 × 10 ⁻⁶	90	¹ PAKHLOVA	09	BELL	$ \begin{array}{c} e^+e^- \rightarrow \psi(4360) \rightarrow \\ D^0 D^{*-}\pi^+ \end{array} $
1 Using 4355 $^{+}_{-10}$ 9 \pm 9	9 MeV fo	or the mass of $\psi(4$	360).		
https://pdg.lbl.gov		Page 5		Crea	ted: 8/11/2022 09:3

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

$\Gamma(D^0 D^{*-} \pi^+) / \Gamma(\psi(2$	$S)\pi^+\pi^-$	-)				Г ₈ /Г ₄	ł
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT		_
<8	90	PAKHLOVA	09	BELL	$e^+e^- \rightarrow D^0 D^{*-}$	ψ (4360) \rightarrow π^+	
$\Gamma(D_1(2420)\overline{D} + \text{c.c.})/VAUVE}$	ΊΓ _{total}	DOCUMENT ID		TECN	COMMENT	۲ ₉ /۲	-
possibly seen	1	LABLIKIM	19 AR	BES3	$e^+e^- \rightarrow$	$\pi^+\pi^- D\overline{D}$	-
¹ Evidence for e^+e^- – sarily resonant.	→ <i>D</i> ₁ (242)	$(0)\overline{D}$ + c.c. betw	veen $_{ m V}$	$\sqrt{s} = 4.3$	3 and 4.6 Ge	eV, not neces	-
$\Gamma(\rho \overline{p} \eta) / \Gamma_{\text{total}}$		DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	Г ₁₀ /Г	-
not seen		ABLIKIM	21AN	BES3	$e^+e^- \rightarrow$	pp η	
$\Gamma(p\overline{p}\omega)/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	COMMENT	Г ₁₁ /Г	-
not seen		ABLIKIM	21AN	BES3	$e^+e^- \rightarrow$	p <u>p</u> ω	-
	ψ(4	360) REFERE	NCE	S			-

ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM	21AJ 21AK 21AN 200 19AR 19K 17B 17G 17V 17B	PR D104 052012 PR D104 092001 PR D104 092008 PR D102 031101 PR D100 032005 PR D99 019903 (errat.) PRL 118 092001 PRL 118 092002 PR D96 032004 PR D99 019903 (errat.) PR D96 054008	 M. Ablikim et al. J. Zhang, J. Zhang 	(BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.) (BESIII Collab.)
ZHANG ABLIKIM	17C 15S	EPJ C77 727 PRI 115 011803	J. Zhang, L. Yuan M. Ablikim <i>et al</i>	(BESIII Collab.)
HAN	15	PR D92 012011	Y.L. Han <i>et al.</i>	(BELLE Collab.)
WANG	15A	PR D91 112007	X.L. Wang <i>et al.</i>	(BELLE Collab.)
LEES WANG PAKHLOVA	14F 13B 09	PR D89 111103 PR D87 051101 PR D80 091101	J.P. Lees <i>et al.</i> X.L. Wang <i>et al.</i> G. Pakhlova <i>et al.</i>	(BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
LIU AUBERT WANG	08H 07S 07D	PR D78 014032 PRL 98 212001 PRL 99 142002	Z.Q. Liu, X.S. Qin, C.Z. Yuan B. Aubert <i>et al.</i> X.L. Wang <i>et al.</i>	(BABAR Collab.) (BELLE Collab.)

https://pdg.lbl.gov