QUARKS

The u-, d-, and s-quark masses are the $\overline{\mathsf{MS}}$ masses at the scale μ = 2 GeV. The c- and b-quark masses are the $\overline{\text{MS}}$ masses renormalized at the $\overline{\rm MS}$ mass, i.e. $\overline{m}=\overline{m}(\mu=\overline{m})$. The t-quark mass is extracted from event kinematics (see the review "The Top Quark").

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$m_u = 2.16^{+0.49}_{-0.26}~{
m MeV}$$
 Charge $= \frac{2}{3}~e~~l_z = +\frac{1}{2}$ $m_u/m_d = 0.474^{+0.056}_{-0.074}$

Charge
$$= \frac{2}{3} e \quad I_z = +\frac{1}{2}$$

$$I(J^P) = \frac{1}{2}(\frac{1}{2}^+)$$

$$I(J^P)=0(\tfrac{1}{2}^+)$$

$$m_s = 93.4^{+8.6}_{-3.4}~{
m MeV}~{
m Charge} = -{1\over 3}~{
m e}~{
m Strangeness} = -1$$
 $m_s~/~((m_u+m_d)/2) = 27.33^{+0.67}_{-0.77}$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_c = 1.27 \pm 0.02 \; {
m GeV} \qquad {
m Charge} = {2\over 3} \; e \quad {
m Charm} = +1 \ m_c/m_s = 11.76^{+0.05}_{-0.10} \ m_b/m_c = 4.58 \pm 0.01 \ m_b-m_c = 3.45 \pm 0.05 \; {
m GeV}$$

$$I(J^P) = 0(\frac{1}{2}^+)$$

$$m_b = 4.18^{+0.03}_{-0.02} \; \mathrm{GeV} \hspace{0.5cm} \mathrm{Charge} = -\frac{1}{3} \; e \;\;\; \mathrm{Bottom} = -1$$

Created: 8/11/2022 09:36

$$I(J^P) = O(\frac{1}{2}^+)$$

$$\mathsf{Charge} = \tfrac{2}{3} \ \mathsf{e} \qquad \quad \mathsf{Top} = +1$$

Mass (direct measurements) $m=172.69\pm0.30~{\rm GeV}^{\ [a,b]}~{\rm (S=1.3)}$ Mass (from cross-section measurements) $m=162.5^{+2.1}_{-1.5}~{\rm GeV}^{\ [a]}$ Mass (Pole from cross-section measurements) $m=172.5\pm0.7~{\rm GeV}$ $m_t-m_{\overline t}=-0.15\pm0.20~{\rm GeV}~{\rm (S=1.1)}$ Full width $\Gamma=1.42^{+0.19}_{-0.15}~{\rm GeV}~{\rm (S=1.4)}$ $\Gamma(W\,b)/\Gamma(W\,q\,(q=b,\,s,\,d))=0.957\pm0.034~{\rm (S=1.5)}$

t-quark EW Couplings

$$F_0 = 0.693 \pm 0.013$$

 $F_- = 0.315 \pm 0.010$
 $F_+ = -0.005 \pm 0.007$
 $F_{V+A} < 0.29$, CL = 95%

t DECAY MODES		Fraction (Γ_i/I)	Γ) '	Confidence level	<i>p</i> (MeV/ <i>c</i>)
Wq(q = b, s, d)					_
W b					_
e $ u_e$ b	$(11.10 \pm 0.30)~\%$				
$\mu u_{\mu} { extbf{b}}$	$(11.40\pm0.20)~\%$				
$ au u_{ au}$ b	(10.7 \pm 0.5) %				
q q b	(66.5 ± 1.4) %				_
$\gamma q(q=u,c)$		[c] < 1.8	× 10	-4 95%	_
$\Delta T = 1$ weak neutral current ($T1$) modes					
Zq(q=u,c)	T1	[d] < 5	× 10	-4 95%	_
Hu	T1	< 1.2	\times 10	-3 95%	_
Нс	T1	< 1.1	\times 10	−3 95%	_
$\ell^+ \overline{q} \overline{q}'(q=d,s,b; q'=u,c)$	T1	< 1.6	× 10	−3 95%	_

b' (4th Generation) Quark, Searches for

Mass m > 190 GeV, CL = 95% $(p \overline{p}, \text{ quasi-stable } b')$ Mass m > 1390 GeV, CL = 95% $(B(b' \rightarrow Zb) = 1)$ Mass m > 1350 GeV, CL = 95% $(B(b' \rightarrow Wt) = 1)$ Mass m > 1570 GeV, CL = 95% $(B(b' \rightarrow Hb) = 1)$ Mass m > 46.0 GeV, CL = 95% $(e^+e^-, \text{ all decays})$

Created: 8/11/2022 09:36

t' (4th Generation) Quark, Searches for

```
m(t'(2/3)) > 1280 GeV, CL = 95% (B(t' \rightarrow Zt) = 1) m(t'(2/3)) > 1295 GeV, CL = 95% (B(t' \rightarrow Wb) = 1) m(t'(2/3)) > 1310 GeV, CL = 95% (singlet t') m(t'(2/3)) > 1350 GeV, CL = 95% (t' in a weak isospin doublet (t',b')) m(t'(5/3)) > 1.350 \times 10^3 GeV, CL = 95% (t'(5/3) \rightarrow tW^+)
```

Free Quark Searches

All searches since 1977 have had negative results.

NOTES

- [a] A discussion of the definition of the top quark mass in these measurements can be found in the review "The Top Quark."
- [b] Based on published top mass measurements using data from Tevatron Run-I and Run-II and LHC at $\sqrt{s}=7$ TeV. Including the most recent unpublished results from Tevatron Run-II, the Tevatron Electroweak Working Group reports a top mass of 173.2 ± 0.9 GeV. See the note "The Top Quark' in the Quark Particle Listings of this *Review*.
- [c] This limit is for $\Gamma(t \to \gamma q)/\Gamma(t \to W b)$.
- [d] This limit is for $\Gamma(t \to Zq)/\Gamma(t \to Wb)$.

Created: 8/11/2022 09:36